• 제목/요약/키워드: Error Propagation Model

검색결과 305건 처리시간 0.02초

Geostationary Orbit Surveillance Using the Unscented Kalman Filter and the Analytical Orbit Model

  • Roh, Kyoung-Min;Park, Eun-Seo;Choi, Byung-Kyu
    • Journal of Astronomy and Space Sciences
    • /
    • 제28권3호
    • /
    • pp.193-201
    • /
    • 2011
  • A strategy for geostationary orbit (or geostationary earth orbit [GEO]) surveillance based on optical angular observations is presented in this study. For the dynamic model, precise analytical orbit model developed by Lee et al. (1997) is used to improve computation performance and the unscented Kalman filer (UKF) is applied as a real-time filtering method. The UKF is known to perform well under highly nonlinear conditions such as surveillance in this study. The strategy that combines the analytical orbit propagation model and the UKF is tested for various conditions like different level of initial error and different level of measurement noise. The dependencies on observation interval and number of ground station are also tested. The test results shows that the GEO orbit determination based on the UKF and the analytical orbit model can be applied to GEO orbit tracking and surveillance effectively.

인공신경망 이론을 이용한 소유역에서의 장기 유출 해석 (Forecasting Long-Term Steamflow from a Small Waterhed Using Artificial Neural Network)

  • 강문성;박승우
    • 한국농공학회지
    • /
    • 제43권2호
    • /
    • pp.69-77
    • /
    • 2001
  • An artificial neural network model was developed to analyze and forecast daily steamflow flow a small watershed. Error Back propagation neural networks (EBPN) of daily rainfall and runoff data were found to have a high performance in simulating stremflow. The model adopts a gradient descent method where the momentum and adaptive learning rate concepts were employed to minimize local minima value problems and speed up the convergence of EBP method. The number of hidden nodes was optimized using Bayesian information criterion. The resulting optimal EBPN model for forecasting daily streamflow consists of three rainfall and four runoff data (Model34), and the best number of the hidden nodes were found to be 13. The proposed model simulates the daily streamflow satisfactorily by comparison compared to the observed data at the HS#3 watershed of the Baran watershed project, which is 391.8 ha and has relatively steep topography and complex land use.

  • PDF

클러스터링 기법을 이용한 비선형 공정의 병렬구조 모델링 (Parallel Structure Modeling of Nonlinear Process Using Clustering Method)

  • 박춘성;최재호;오성권;안태천
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1997년도 추계학술대회 학술발표 논문집
    • /
    • pp.383-386
    • /
    • 1997
  • In this paper, We proposed a parallel structure of the Neural Network model to nonlinear complex system. Neural Network was used as basic model which has learning ability and high tolerence level. This paper, we used Neural Network which has BP(Error Back Propagation Algorithm) model. But it sometimes has difficulty to append characteristic of input data to nonlinear system. So that, I used HCM(hard c-Means) method of clustering technique to append property of input data. Clustering Algorithms are used extensively not only to organized categorize data, but are also useful for data compression and model construction. Gas furance, a sewage treatment process are used to evaluate the performance of the proposed model and then obtained higher accuracy than other previous medels.

  • PDF

유전자 알고리즘을 이용한 FNNs 기반 비선형공정시스템 모델의 최적화 (Optimization of Fuzzy Neural Network based Nonlinear Process System Model using Genetic Algorithm)

  • 최재호;오성권;안태천
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1997년도 춘계학술대회 학술발표 논문집
    • /
    • pp.267-270
    • /
    • 1997
  • In this paper, we proposed an optimazation method using Genetic Algorithm for nonlinear system modeling. Fuzzy Neural Network(FNNs) was used as basic model of nonlinear system. FNNs was fused of Fuzzy Inference which has linguistic property and Neural Network which has learning ability and high tolerence level. This paper, We used FNNs which was proposed by Yamakawa. The FNNs was composed Simple Inference and Error Back Propagation Algorithm. To obtain optimal model, parameter of membership function, learning rate and momentum coefficient of FNNs are tuned using genetic algorithm. And we used simplex algorithm additionaly to overcome limit of genetic algorithm. For the purpose of evaluation of proposed method, we applied proposed method to traffic choice process and waste water treatment process, and then obtained more precise model than other previous optimization methods and objective model.

  • PDF

병렬구조 FNN과 비선형 시스템으로의 응용 (Fuzzy-Neural Networks with Parallel Structure and Its Application to Nonlinear Systems)

  • 박호성;윤기찬;오성권
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 D
    • /
    • pp.3004-3006
    • /
    • 2000
  • In this paper, we propose an optimal design method of Fuzzy-Neural Networks model with parallel structure for complex and nonlinear systems. The proposed model is consists of a multiple number of FNN connected in parallel. The proposed FNNs with parallel structure is based on Yamakawa's FNN and it uses simplified inference as fuzzy inference method and Error Back Propagation Algorithm as learning rules. We use a HCM clustering and GAs to identify the structure and the parameters of the proposed model. Also, a performance index with a weighting factor is presented to achieve a sound balance between approximation and generalization abilities of the model. To evaluate the performance of the proposed model. we use the time series data for gas furnace and the numerical data of nonlinear function.

  • PDF

GPS 네트워크 기반의 전리층 모델을 이용한 단일 주파수 수신기의 측위 정밀도 향상 (The Improvement of the Positioning Precision for Single Frequency Receiver Using Ionospheric Model Based on GPS Network)

  • 최병규;이상정;박종욱
    • 한국측량학회지
    • /
    • 제24권2호
    • /
    • pp.167-173
    • /
    • 2006
  • 전리층은 안테나에서 수신되는 GPS 신호에 가장 큰 오차를 유발시킨다. 이중 주파수(L1,L2)를 모두 사용하는 수신기는 두 주파수의 선형조합을 통해 전리층의 오차를 효율적으로 제거할 수 있지만, 단일 주파수 수신기(L1)는 전리층 모델을 이용하여 오차를 계산해야 한다. 본 연구에서는 한국천문연구원에서 운영하는 9개의 GPS 기준국 망 데이터를 이용하여 위 경도 각각 $1^{\circ}{\times}1^{\circ}$의 공간 해상도를 갖는 격자 기반의 새로운 전리층 모델을 개발하였고, 매 관측 시간대별로 한반도 상공의 총전자수(Total Electron Contents, TEC)를 계산하였다. 기존의 Klobuchar 모델과 새롭게 개발된 KASI 전리층 모델에 의한 측위 결과를 서로 비교하였고, 전리층의 총전자수 변화에 따른 모델의 정밀도를 제시하였다.

주파수자원분석시스템 탑재 전파모델 ITU-R P.526, P.1546, P.1812의 검증 및 분석 (Verification and Analysis for Recommendation ITU-R P.526, P.1546, P.1812 of Propagation Model Loaded in Spectrum Management Intelligent System)

  • 김동우;오순수
    • 한국전자통신학회논문지
    • /
    • 제16권2호
    • /
    • pp.247-254
    • /
    • 2021
  • 무선기술 및 통신 서비스의 급속한 발전에 따라 주파수 자원의 부족과 인접 대역 전파 간섭 등의 문제가 지속적으로 제기되고 있다. 해결방안으로 정부에서는 주파수자원분석시스템(Spectrum Management Intelligent System, SMIS)을 운영 중이다. 본 논문은 주파수자원분석시스템의 신뢰성을 검증하기 위하여, SMIS 시뮬레이션 값을 상용툴 ATDI 결과값 및 ITU-R Matlab 코드 결과값과 비교하였다. 전파 모델 중 방송망과 연관이 있는 권고서 ITU-R P.526, P.1546, P.1812를 선정하였다. 분석 결과, SMIS의 추출값은 전체적으로 1dB이내의 작은 오차를 갖는다. 본 연구는 향후 주파수 분배와 인접 대역간 간섭분석 정책 수립과 연구 개발 등에 활용될 수 있을 것으로 예상한다.

Hybrid FRP Rod의 변형률을 이용한 축방향 변위추정 모형 개발 (Development of Estimated Model for Axial Displacement of Hybrid FRP Rod using Strain)

  • 곽계환;성배경;장화섭
    • 대한토목학회논문집
    • /
    • 제26권4A호
    • /
    • pp.639-645
    • /
    • 2006
  • FRP(Fiber Reinforced Polymer)는 부식의 저항성, 고강도, 피로저항 능력 및 성형성 등에서 우수한 건설 신소재이다. 광섬유 브래그 격자(Fiber Bragg Grating; FBG) 센서는 전자기 저항, 작은 소재의 크기, 그리고 높은 내구성 등의 이점으로 smart sensor로서 현재 많이 사용되고 있다. 하지만 FBG 센서의 변위 측정 기술 능력의 부족으로 현재까지는 변형률, 온도 등의 물리량 측정센서로서 활용되고 있는 실정이다. 본 연구에서는 FRP와 FBG센서의 기능 복합화(Hybrid)를 통하여 smart FRP Rod를 개발 한 후 인장시험을 실시하였다. 또한, FBG센서에 의해 측정된 변형률 데이터를 신경망(Neural Network) 기법을 이용하여 변위 추정 모형을 개발함으로서 FBG 센서 단점인 변형률 계측만을 위한 센싱 역할을 극복하고자 한다. 인공신경망 모형은 MLP(Multi-layer Perceptron)로, 오차범위 0.001에 수렴 될 수 있도록 학습(training)을 실시하였다. 학습에는 비선형 목적함수와 역전파 학습(Back-propagation) 알고리즘을 적용하였으며 모형의 검증은 UTM에서 측정된 변위 값과 수치해석에 의한 결과 값을 비교함으로서 실시하였다.

A Prediction Model of the Sum of Container Based on Combined BP Neural Network and SVM

  • Ding, Min-jie;Zhang, Shao-zhong;Zhong, Hai-dong;Wu, Yao-hui;Zhang, Liang-bin
    • Journal of Information Processing Systems
    • /
    • 제15권2호
    • /
    • pp.305-319
    • /
    • 2019
  • The prediction of the sum of container is very important in the field of container transport. Many influencing factors can affect the prediction results. These factors are usually composed of many variables, whose composition is often very complex. In this paper, we use gray relational analysis to set up a proper forecast index system for the prediction of the sum of containers in foreign trade. To address the issue of the low accuracy of the traditional prediction models and the problem of the difficulty of fully considering all the factors and other issues, this paper puts forward a prediction model which is combined with a back-propagation (BP) neural networks and the support vector machine (SVM). First, it gives the prediction with the data normalized by the BP neural network and generates a preliminary forecast data. Second, it employs SVM for the residual correction calculation for the results based on the preliminary data. The results of practical examples show that the overall relative error of the combined prediction model is no more than 1.5%, which is less than the relative error of the single prediction models. It is hoped that the research can provide a useful reference for the prediction of the sum of container and related studies.

HCM과 유전자 알고리즘에 기반한 확장된 다중 FNN 모델 설계 (Design of Extended Multi-FNNs model based on HCM and Genetic Algorithm)

  • 박호성;오성권
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 합동 추계학술대회 논문집 정보 및 제어부문
    • /
    • pp.420-423
    • /
    • 2001
  • In this paper, the Multi-FNNs(Fuzzy-Neural Networks) architecture is identified and optimized using HCM(Hard C-Means) clustering method and genetic algorithms. The proposed Multi-FNNs architecture uses simplified inference and linear inference as fuzzy inference method and error back propagation algorithm as learning rules. Here, HCM clustering method, which is carried out for the process data preprocessing of system modeling, is utilized to determine the structure of Multi-FNNs according to the divisions of input-output space using I/O process data. Also, the parameters of Multi-FNNs model such as apexes of membership function, learning rates and momentum coefficients are adjusted using genetic algorithms. An aggregate performance index with a weighting factor is used to achieve a sound balance between approximation and generalization abilities of the model. To evaluate the performance of the proposed model we use the time series data for gas furnace and the NOx emission process data of gas turbine power plant.

  • PDF