다중의 영상을 이용하여 하나의 파노라마 영상을 제작하는 기법은 컴퓨터 비전, 컴퓨터 그래픽스 등과 같은 여러 분야에서 널리 연구되고 있다. 파노라마 영상은 하나의 카메라에서 얻을 수 있는 영상의 한계, 즉 예를 들어 화각, 화질, 정보량 등의 한계를 극복할 수 있는 좋은 방법으로서 가상현실, 로봇비전 등과 같이 광각의 영상이 요구되는 다양한 분야에서 응용될 수 있다. 파노라마 영상은 단일 영상과 비교하여 보다 큰 몰입감을 제공한다는 점에서 큰 의미를 갖는다. 현재 다양한 파노라마 영상 제작 기법들이 존재하지만, 대부분의 기법들이 공통적으로 파노라마 영상을 구성할 때 각 영상에 존재하는 특징점 및 대응점을 검출하는 방식을 사용하고 있다. 또한, 대응점을 이용한 RANSAC(RANdom SAmple Consensus) 알고리즘을 사용, Homography Matrix를 구하여 영상을 변환하는 방법을 사용한다. 본 논문에서 사용한 SURF(Speeded Up Robust Features) 알고리즘은 영상의 특징점을 검출할 때 영상의 흑백정보와 지역 공간 정보를 활용하는데, 영상의 크기 변화와 시점 검출에 강하며 SIFT(Scale Invariant Features Transform) 알고리즘에 비해 속도가 빠르다는 장점이 있어서 널리 사용되고 있다. SURF 알고리즘은 대응점 검출 시 잘못된 대응점을 검출하는 경우가 생긴다는 단점이 존재하는데 이는 RANSAC 알고리즘의 수행속도를 늦추며, 그로인해 CPU 사용 점유율을 높이기도 한다. 대응점 검출 오류는 파노라마 영상의 정확성 및 선명성을 떨어뜨리는 핵심 요인이 된다. 본 논문에서는 이러한 대응점 검출의 오류를 최소화하기 위하여 대응점 좌표 주변 $3{\times}3$ 영역의 RGB값을 사용하여 잘못된 대응점들을 제거하는 중간 필터링 과정을 수행하고, 문제해결을 시도하는 동시에 파노라마 이미지구성 처리 속도 및 CPU 사용 점유율 등의 성능 향상 결과와 추출된 대응점 감소율, 정확도 등과 관련한 분석 및 평가 결과를 제시하였다.
논의 시기별 파장별 분광반사특성을 조사하기 위해, Landsat TM 밴드, RVI, 습윤도의 특성을 분산분석한 결과, 가시광선 영역의 TM 밴드 1, 2, 3의 논지역 평균 자료값은 식물색소에 의한 광흡수와 관련이 많아 군락형성이 최대인 8월 19일과 9월 1일에 가장 낮아졌다가 등숙기인 9월 중 하순에 다시 높아졌다. 중간 적외선 영역인 TM 밴드 5와 7은 수분에 민감하여, 담수상태로 수체의 영향이 컸던 5월 31일과 6월 2일의 자료값이 가장 낮았고, 군락의 최성기에서 성숙기로 접어들면서 식물체의 수분함량이 줄어들어 자료값이 점점 높아졌다. 한편, RVI는 출수ㆍ개화기인 8월 19일과 9월 1일에 가장 높았고, 습윤도는 벼의 생육초기에서 성숙기로 갈수록 계속 낮아졌다. 이앙기인 5월 31일, 출수기인 8월 19일 두시기 자료에서 수분에 민감한 TM 밴드 5, 식생의 특징이 드러나는 RVI, 또한 모든 밴드의 특성이 포함된 습윤도를 벼 재배면적 추정을 위한 정보로 이용하여, 이앙기에 담수상태이고 같은 지역이 출수기에 무성한 식생의 특징을 보이는 곳을 벼 재배지역으로 정하여 벼 재배면적 지도를 작성하였다. 벼 재배면적은 7291.19ha 추정되었고, 지형도를 이용한 100지점의 정확도 검증 결과 92%로 나타났다. 1991년 5월 31일과 8월 19일 두 시기의 Landsat TM 밴드 3, 4, 5, RVI 및 습윤도를 각각 유효밴드로 선정하여 중첩한 총 10개의 밴드를 가진 화상을 생성하여 기존의 분류법에 이용하였다. 최대우도법에 의한 감독분류 결과 벼 재배면적은 9100.98 ha였다. Error matrix에 의한 분류정확도는 97.2%로 나타났고, 지형도를 이용한 정확도는 95%로 나타났다. 분류항목수를 15개와 20개로 한 ISODATA법에 의한 비교사 분류결과 벼 재배면적이 각각 6663.60ha와 5704.56 ha로 추정되었고, 지형도에 의한 분류정확도는 각각 87%와 82%로 나타났다. 통계연보를 기준자료로 하여 분류방법간 비교를 위하여 당진군 우강면에 대하여 벼 재배면적 비교를 한 바 감독분류에 의해 2522.97ha로 가장 크게 추정되었고, 다음이 규칙기반분류와 분류항목수를 20으로 한 무감독분류법으로 각각 1567.31 ha와 1865.61 ha로 추정되었다. 분류항목수를 15로 한 무감독분류에 의한 벼 재배면적이 1638.72 ha로 가장 작게 추정되었다. 이때, 통계연보 자료상의 우강면의 논면적(2242.69ha)에 가장 가깝게 추정된 결과는 규칙기반분류이었다. 벼 재배지역은 추정방법에 관계없이 이앙기와 출수기, 두 시기의 자료를 이용한 경우 다소 차이는 있으나 정확하게 구분되었다. 위성의 분광반사 특성을 이용한 규칙기반분류는 매우 쉽고, 재현성이 있으며, 넓은 지역에 대한 신속한 작업이 가능하다.
협업 필터링은 학계나 산업계에서 우수한 성능으로 인해 많이 사용되는 추천기법이지만, 정량적 정보인 사용자들의 평가점수에만 국한하여 추천결과를 생성하므로 간혹 정확도가 떨어지는 문제가 발생한다. 이에 새로운 정보를 추가로 고려하여, 협업 필터링의 성능을 개선하려는 연구들이 지금까지 다양하게 시도되어 왔다. 본 연구는 최근 Web 2.0 시대의 도래로 인해 사용자들이 구입한 상품에 대한 솔직한 의견을 인터넷 상에 자유롭게 표현한다는 점에 착안하여, 사용자가 직접 작성한 리뷰를 참고하여 협업 필터링의 성능을 개선하는 새로운 추천 알고리즘을 제안하고, 이를 스마트폰 앱 추천 시스템에 적용하였다. 정성 정보인 사용자 리뷰를 정량화하기 위해 본 연구에서는 텍스트 마이닝을 활용하였다. 구체적으로 본 연구의 추천시스템은 사용자간 유사도를 산출할 때, 사용자 리뷰의 유사도를 추가로 반영하여 보다 정밀하게 사용자간 유사도를 산출할 수 있도록 하였다. 이 때, 사용자 리뷰의 유사도를 산출하는 접근법으로 중복 사용된 색인어의 빈도로 산출하는 방안과 TF-IDF(Term Frequency - Inverse Document Frequency) 가중치 합으로 산출하는 2가지 방안을 제시한 뒤 그 성능을 비교해 보았다. 실험결과, 제안 알고리즘을 통한 추천, 즉 사용자 리뷰의 유사도를 추가로 반영하는 알고리즘이 평점만을 고려하는 전통적인 협업 필터링과 비교해 더 우수한 예측정확도를 나타냄을 확인할 수 있었다. 아울러, 중복 사용 단어의 TF-IDF 가중치의 합을 고려했을 때, 단순히 중복 사용 단어의 빈도만을 고려했을 때 보다 조금 더 나은 예측정확도를 얻을 수 있음도 함께 확인할 수 있었다.
대표적인 추천 시스템 방법론인 협업 필터링(Collaborative Filtering)에는 이웃기반 방법(Neighbor Methods)과 잠재 요인 모델(Latent Factor model)이라는 두 가지 접근법이 있다. 이중 행렬 분해(Matrix Factorization)를 이용하는 잠재 요인 모델은 사용자-아이템 상호작용 행렬을 두 개의 보다 낮은 차원의 직사각형 행렬로 분해하고 이들의 행렬 곱으로 아이템의 평점(Rating)을 예측한다. 평점 패턴으로부터 추출된 요인 벡터들을 통해 사용자와 아이템 속성을 포착할 수 있기 때문에 확장성, 정확도, 유연성 측면에서 이웃기반 방법보다 우수하다고 알려져 있다. 하지만 평점이 지정되지 않은 아이템에 대해서는 선호도가 다른 개개인의 다양성을 반영하지 못하는 근본적인 한계가 있고 이는 반복적이고 부정확한 추천을 초래하게 된다. 이러한 잠재요인 모델의 한계를 개선하고자 각각의 아이템 별로 사용자의 선호도를 적응적으로 학습하는 적응 심층 잠재요인 모형(Adaptive Deep Latent Factor Model; ADLFM)이 등장하였다. ADLFM은 아이템의 특징을 설명하는 텍스트인 아이템 설명(Item Description)을 입력으로 받아 사용자와 아이템의 잠재 벡터를 구하고 어텐션 스코어(Attention Score)를 활용하여 개인의 다양성을 반영할 수 있는 방법을 제시한다. 하지만 아이템 설명을 포함하는 데이터 셋을 요구하기 때문에 이 방법을 적용할 수 있는 대상이 많지 않은 즉 일반화에 있어 한계가 있다. 본 연구에서는 아이템 설명 대신 추천시스템에서 보편적으로 사용하는 아이템 ID를 입력으로 하고 Self-Attention, Multi-head attention, Multi-Conv1d 등 보다 개선된 딥러닝 모델 구조를 적용함으로써 ADLFM의 한계를 개선할 수 있는 일반화된 적응 심층 잠재요인 추천모형 G-ADLFRM을 제안한다. 다양한 도메인의 데이터셋을 가지고 입력과 모델 구조 변경에 대한 실험을 진행한 결과, 입력만 변경했을 경우 동반되는 정보손실로 인해 ADLFM 대비 MAE(Mean Absolute Error)가 소폭 높아지며 추천성능이 하락했지만, 처리할 정보량이 적어지면서 epoch 당 평균 학습속도는 대폭 향상되었다. 입력 뿐만 아니라 모델 구조까지 바꿨을 경우에는 가장 성능이 우수한 Multi-Conv1d 구조가 ADLFM과 유사한 성능을 나타내며 입력변경으로 인한 정보손실을 충분히 상쇄시킬 수 있음을 보여주었다. 결론적으로 본 논문에서 제시한 모형은 기존 ADLFM의 성능은 최대한 유지하면서 빠른 학습과 추론이 가능하고(경량화) 다양한 도메인에 적용할 수 있는(일반화) 새로운 모형임을 알 수 있다.
본 연구의 목적은 2011년 4월 22일부터 10월 22일까지 우리나라에서 강수가 있는 총 75일 동안 COMS 위성의 적외 채널 $10.8{\mu}m$ 휘도 온도(IR), 적외 채널 $10.8{\mu}m$와 수증기 채널 $6.7{\mu}m$의 휘도 온도차(IR-WV), 정규화 된 가시반사도(VIS)와 기상 레이더의 강우강도를 이용하여 2-D와 3-D 대류운의 강우강도 (CRR) 조견표를 향상시키는 것이다. 특별히 한국형 2-D와 3-D CRR 조견표를 검증하기 위해 2011년 강수가 있는 24일 동안의 기상 레이더 강우강도 자료가 사용된다. 2-D와 3-D CRR 조견표는 각 채널의 등급 범주별 강우 총수와 비강우 총수의 행렬을 이용하여 구한 강우 확률에 평균 누적강우강도와 최대 강우강도를 각각 곱함으로써 2-D (IR, IR-WV)와 3-D (IR, IR-WV, VIS) 조견표의 기본과 최대 행렬을 얻을 수 있다. 최종적으로 새로운 2-D와 3-D의 CRR 조견표는 경험적으로 기본과 최대 강우강도 행렬의 회귀 분석으로 얻어진다. 그 결과 새로운 CRR 조견표는 기존보다 낮은 IR 휘도 온도, 낮은 IR-WV 휘도 온도차일 때에도 비교적 많은 강우 현상을 나타내며, $10mm\;h^{-1}$ 이상의 강우강도 영역이 확대되어 나타난다. 정확도와 범주별 통계가 주어진 기간 동안 발생했던 CRR 자료에 대해 계산된다. 새로운 2-D와 3-D CRR 조견표의 평균 오차, 평균절대 오차, 제곱근평균 오차가 기존 조견표보다 작게 나타나며, 예측 거짓경고비율은 감소하고, 탐지확률은 증가하며, 임계성공지수는 개선된다. 태풍과 뇌우와 같은 기상 이변에서의 강한 호우를 고려하기 위해서 습윤 보정 계수를 교정한다. 이 인자는 수치모델이나 COMS에서 복원한 지면에서 500 hPa까지 평균한 총가강수량과 상대습도의 곱 (PW RH)으로 정의된다. 이 연구에서는 PW RH에 근거하여 IR 운정 휘도 온도가 210 K 이하일 때, 상대습도가 40% 이상일 때 1에서 2사이를 경험적으로 정한다. 새로운 2-D와 3-D CRR 조견표를 적용한 결과 평균 오차, 평균 절대 오차, 제곱근 평균 오차가 줄어든다.
본 논문에서는 천리안(Communication, Ocean and Meteorological Satellite; COMS)과 TRMM(Tropical Rainfall Measurement Mission)을 통하여 관측한 위성영상자료를 이용한 극치강우(Extreme Rainfall) 추정 알고리즘을 개발하였으며, 2011년 7월 집중호우를 대상으로 그 적용성을 평가하였다. TRMM/PR(TRMM/Precipitation Radar)과 AWS(Automatic Weather System) 자료를 이용하여 고도에 따른 멱급수 회귀방정식으로 Z-R관계식을 추정한 결과 $Z=303R^{0.72}$를 산출하였으며, 지상관측 자료와 비교한 결과 상관계수가 0.57로 분석되었다. 이 값과 TRMM/VIRS(TRMM/Visible Infrared Scanner)와의 관계를 이용하여 극치강우알고리즘을 개발하였으며, 천리안 위성에 적용하여 10분강 우를 추정한 결과 강우강도가 큰 경우에는 과소 추정하는 경향이, 작은 경우에는 과대 추정하는 경향이 있는 것으로 분석되었으나, 전반적인 패턴은 관측과 유사한 경향이 있는 것으로 분석되었다. 또한 이 알고리즘을 같은 센서를 이용하는 천리안 위성에 적용하여 AWS의 상관관계를 분석한 결과, 10분 강우량의 경우 상관계수는 0.517로 평균제곱근 오차는 3.146으로 분석되었고, 공간 상관행렬 오차의 평균은 -0.530~-0.228의 음의 상관을 보이는 것으로 분석되었다. 위성자료를 이용한 극치강우량 추정의 오차 발생 원인은 여러 가지 외부적인 요인으로 판단되며, 지속적인 알고리즘 개선 및 오차보정을 통한 정확도 개선이 필요한 것으로 사료된다. 본 연구의 결과는 추후 다양한 정지궤도위성의 이용을통 한 다중 원격탐사자료의 활용으로 보다 정확한 미계측 유역 수문자료 확충 및 실시간 홍수 예 경보 시스템 구축에 활용이 가능할 것으로 사료된다.
목적 : electronic portal imaging device(EPID)를 이용하여 폐암 환자에서 시행한 검증 영상을 분석하여 3차원 입체 조형치료계획 시 자세 오차(set-up error)와 종양의 이동 거리를 고려한 적절한 차폐 여유를 평가해 보고자 한다. 대상 및 방법 : 1995년 연세암센터 치료방사선과에 내원하여 EPID가 장착된 Clinac 2100C/D를 이용하여 치료받은 폐암 환자 10명을 대상으로 하였다. 환자 1인 당 1 port에 대한 검증 영상을 매일 얻어 random 오차와 systematic 오차를 구했고, 치료 1회 당 중복 영상을 얻어 종양의 움직임을 구했다. 매일 얻은 검증 영상은 103개이었고, 중복 영상은 10개이었다. 결과 : 전체 10 명의 환자의 x 축, y 축으로의 평균 이동은 각각 1.41 mm, 1.78 mm 이었고 systematic 이동은 표준편차가 x 축, y 축으로 각각 4.63 mm, 4.11 mm이었다. random 이동은 각 환자의 평균 이동으로부터 x 축, y 축으로 표준편차가 각각 4.17 mm, 3.31 mm 이었다. 호흡에 의한 y 축으로의 이동은 평균 12.2 mm이었고, 표준편차는 4.03 mm 이었다. 결론 : 폐암 환자에서 3차원 방사선치료를 시행하려고 할 경우 치료 계획 시 clinical target volume에서 x, y 축으로 각각 10 mm, 25 mm 정도의 여유가 필요하다고 보이며, 치료 초기에 각 환자별로 매일 EPID를 이용하여 얻은 검증 영상과, 중복 영상으로 차폐 여유를 적절히 조절해 주어야 할 것이다.
개인에게 맞춤형 서비스를 제공하는 것이 중요해지면서 개인화 추천 시스템 관련 연구들이 끊임없이 이루어지고 있다. 추천 시스템 중 협업 필터링은 학계 및 산업계에서 가장 많이 사용되고 있다. 다만 사용자들의 평점 혹은 사용 여부와 같은 정량적인 정보에 국한하여 추천이 이루어져 정확도가 떨어진다는 문제가 제기되고 있다. 이와 같은 문제를 해결하기 위해 현재까지 많은 연구에서 정량적 정보 외에 다른 정보들을 활용하여 추천 시스템의 성능을 개선하려는 시도가 활발하게 이루어지고 있다. 리뷰를 이용한 감성 분석이 대표적이지만, 기존의 연구에서는 감성 분석의 결과를 추천 시스템에 직접적으로 반영하지 못한다는 한계가 있다. 이에 본 연구는 리뷰에 나타난 감성을 수치화하여 평점에 반영하는 것을 목표로 한다. 즉, 사용자가 직접 작성한 리뷰를 감성 수치화하여 정량적인 정보로 변환해 추천 시스템에 직접 반영할 수 있는 새로운 알고리즘을 제안한다. 이를 위해서는 정성적인 정보인 사용자들의 리뷰를 정량화 시켜야 하므로, 본 연구에서는 텍스트 마이닝의 감성 분석 기법을 통해 감성 수치를 산출하였다. 데이터는 영화 리뷰를 대상으로 하여 도메인 맞춤형 감성 사전을 구축하고, 이를 기반으로 리뷰의 감성점수를 산출한다. 본 논문에서 사용자 리뷰의 감성 수치를 반영한 협업 필터링이 평점만을 고려하는 전통적인 방식의 협업 필터링과 비교하여 우수한 정확도를 나타내는 것을 확인하였다. 이후 제안된 모델이 더 개선된 방식이라고 할 근거를 확보하기 위해 paired t-test 검증을 시도했고, 제안된 모델이 더 우수하다는 결론을 도출하였다. 본 연구에서는 평점만으로 사용자의 감성을 판단한 기존의 선행연구들이 가지는 한계를 극복하고자 리뷰를 수치화하여 기존의 평점 시스템보다 사용자의 의견을 더 정교하게 추천 시스템에 반영시켜 정확도를 향상시켰다. 이를 기반으로 추가적으로 다양한 분석을 시행한다면 추천의 정확도가 더 높아질 것으로 기대된다.
직업성 역학 연구에서 직업적으로 유해인자와 질병과의 연관성에 대한 연구를 수행함에 타당도 높은 노출 평가를 어떻게 실시할 것인가에 대한 논의가 있어 왔다. 노출 평가를 위한 최상의 상태는 관심있는 물질에 대하여 개인별로 계량화된 노출값을 가지고 있을 때이고, 노출 값의 계산 방법 중 가장 가치가 적은 정보는 노출확률이 높은 공장, 산업 또는 직업에 고용된 사실여부만을 갖고 있을 때이다. 대부분의 산업보건연구에서 노출정보는 두 극단사이에 존재한다. 최근 유사노출군 설정 방법과 대표치 추정을 위한 통계방법들이 소개되면서 전향적으로는 이러한 노출 값의 계산이 가능해지고 있다. 그러나 후향적 노출 평가에서는 순수하게 노출 평가를 목적으로 조사된 자료가 아닌 자료들을 수집하여 노출을 추정하여야 하기 때문에 사실상 계량화된 개인 노출 값을 얻기는 매우 어렵다. 직무-노출매트릭스를 통하여 노출 값을 추정하는 것은 환자-대조군 연구, 단면조사 연구 등의 연구방법에서 흔히 일어 날 수 있는 정보편의를 줄일 수 있어 직업성 역학 연구에서 생애 노출 값의 추정 혹은 노출강도의 추정에 직무-노출매트릭스의 사용이 점차 증가되고 있다. 따라서 직업성 역학연구에서 유용하게 사용되고 있는 직무-노출매트릭스를 고찰하고 분석함으로써 특정 사업장 혹은 산업 중심의 직무-노출매트릭스의 설계 방안을 제시하고자 하였다. 특히 직무구분 축을 중점적으로 설명함으로써 향후 직업적 역학연구의 노출평가를 수행할 때와 근로자 건강보호를 위한 작업장 유해인자 관리를 위한 노출평가를 수행할 때 유용한 방법을 제공하고자 하였다.
임도 사면의 붕괴는 환경적 피해 뿐 만 아니라 사회 경제적 손실을 발생시킨다. 본 연구는 2013년 집중호우로 임도 붕괴가 발생한 강원도 홍천군 화촌면 지역을 대상으로 GIS의 속성정보와 로지스틱 회귀분석을 이용하여 임도 붕괴지 위험도 평가를 실시하였다. 로지스틱 회귀분석결과, 토성이 사토인 지역의 회귀계수는 6.616으로 임도붕괴에 가장 위험성이 높았으며, 경급이 중경목인 지역의 경우 회귀계수가 -3.282로 임도사면의 안정성이 높았다. 임도 붕괴지의 정오분류결과는 74.6%의 분류정확도를 보였다. 로지스틱 회귀모델식을 이용하여 전 구간을 대상으로 적용해 본 결과, 임도붕괴지의 경우 0.5의 기준점 보다 높은 0.7이상의 구간에서 가장 많이 분포하여 붕괴가능성이 높은 것으로 나타났다. 임도 위험도 평가의 판별적중률로 볼 때 임도의 산림환경 및 입지인자의 분석을 통해서도 충분한 붕괴위험 평가가 가능할 것으로 사료된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.