• Title/Summary/Keyword: Error Identification

Search Result 775, Processing Time 0.03 seconds

Sensing Parameter Selection Strategy for Ultra-low-power Micro-servosystem Identification (초저전력 마이크로 서보시스템의 모델식별을 위한 계측 파라미터 선정 기법)

  • Hahn, Bongsu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.8
    • /
    • pp.849-853
    • /
    • 2014
  • In micro-scale electromechanical systems, the power to perform accurate position sensing often greatly exceeds the power needed to generate motion. This paper explores the implications of sampling rate and amplifier noise density selection on the performance of a system identification algorithm using a capacitive sensing circuit. Specific performance objectives are to minimize or limit convergence rate and power consumption to identify the dynamics of a rotary micro-stage. A rearrangement of the conventional recursive least-squares identification algorithm is performed to make operating cost an explicit function of sensor design parameters. It is observed that there is a strong dependence of convergence rate and error on the sampling rate, while energy dependence is driven by error that may be tolerated in the final identified parameters.

System Identification Using Observer Kalman filter Identification

  • Ryu, Hee-Seob;Yoo, Ho-Jun;Kim, Dae-Woo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.52.6-52
    • /
    • 2002
  • The method of identifying the plant models in this paper is the Observer Kalman filter identification (OKID) method. This method of system identification has several pertinent advantages. First, it assumes that the system in question is a discrete linear time-invariant (LTI) state-space system. Second, it requires only input and output data to formulate the model, no a priori knowledge of the system is needed. Third, the OKID method produces a psudo-Kalman state estimator, which is very useful for control applications. Last, the modal balanced realization of the system model means that tuncation errors will be small. Thus, even in the case of model order error the results of that error will...

  • PDF

A Technique of Parameter Identification via Mean Value and Variance and Its Application to Course Changes of a Ship

  • Hane, Fuyuki;Masuzawa, Isao
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.153-156
    • /
    • 1999
  • The technique is reported of identifying parameters in off-line process. The technique demands that closed-loop system consists of a reference and two-degree-of-freedom controllers (TDFC) in real process. A model process is the same as the real process except their parameters. Deviations are differences between the reference and the output of the plant or the model. The technique is based on minimizing identification error between the two deviations. The parameter differences between the plant and the model are characterized of mean value and of variance which are derived from the identification error. Consequently, the algorithm which identifies the unknown plant parameters is shown by minimizing the mean value and the variance, respectively, within double convergence loops. The technique is applied to course change of a ship. The plant deviation at the first trial is shown to occur in replacing the nominal parameters by the default parameters. The plant deviation at the second trial is shown to not occur in replacing the nominal parameters by the identified parameters. Hence, the identification technique is confirmed to be feasible in the real field.

  • PDF

Discriminative Weight Training for Gender Identification (변별적 가중치 학습을 적용한 성별인식 알고리즘)

  • Kang, Sang-Ick;Chang, Joon-Hyuk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.27 no.5
    • /
    • pp.252-255
    • /
    • 2008
  • In this paper, we apply a discriminative weight training to a support vector machine (SVM) based gender identification. In our approach, the gender decision rule is expressed as the SVM of optimally weighted mel-frequency cepstral coefficients (MFCC) based on a minimum classification error (MCE) method which is different from the previous works in that different weights are assigned to each MFCC filter bank which is considered more realistic. According to the experimental results, the proposed approach is found to be effective for gender identification using SVM.

Identification of Dynamic Load Model Parameters Using Particle Swarm Optimization

  • Kim, Young-Gon;Song, Hwa-Chang;Lee, Byong-Jun
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.10 no.2
    • /
    • pp.128-133
    • /
    • 2010
  • This paper presents a method for estimating the parameters of dynamic models for induction motor dominating loads. Using particle swarm optimization, the method finds the adequate set of parameters that best fit the sampling data from the measurement for a period of time, minimizing the error of the outputs, active and reactive power demands and satisfying the steady-state error criterion.

Damage Assessment of Structures Using Dynamic Error Response (동적오차응답치를 이용한 구조물의 손상도 추정)

  • 정범석;오병환
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.10a
    • /
    • pp.486-491
    • /
    • 1996
  • The purpose of present study is to propose a improved damage detection and assessment algorithm that has its basis on the method of system identification. This method allows the use of composite data which is constitute of static displacements and eigenmodes. In the dynamic test, thecurvature and slope of mode shape are introduced to formulate the error responses. The effectiveness of the proposed staristical system identification method is investigated through simulated and experimental studies. Real test data obtained from measurements are used to identify the actual location of damage and to revise the design variables in a concrete structure.

  • PDF

Industrial application of gross error estimation and data reconciliation to byproduction gases in iron and steel making plants

  • Yi, Heui-Seok;Hakchul Shin;Kim, Jeong-Hwan;Chonghun Han
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.69.2-69
    • /
    • 2002
  • Process measurements contain random and gross errors and the size estimation of gross errors is required for production accounting. Mixed integer programming technique had been applied to identify and estimate the gross errors simultaneously. However, the compensate model based on mixed integer programming used all measured variables or spanning tree as gross error candidates. This makes gross error estimation problem combinatorial or computationally expensive. Mixed integer programming with test statistics is proposed for computationally inexpensive gross error identification /estimation. The gross error candidates are identified by measurement test and the set of gross error candidates are...

  • PDF

A constrained minimization-based scheme against susceptibility of drift angle identification to parameters estimation error from measurements of one floor

  • Kangqian Xu;Akira Mita;Dawei Li;Songtao Xue;Xianzhi Li
    • Smart Structures and Systems
    • /
    • v.33 no.2
    • /
    • pp.119-131
    • /
    • 2024
  • Drift angle is a significant index for diagnosing post-event structures. A common way to estimate this drift response is by using modal parameters identified under natural excitations. Although the modal parameters of shear structures cannot be identified accurately in the real environment, the identification error has little impact on the estimation when measurements from several floors are used. However, the estimation accuracy falls dramatically when there is only one accelerometer. This paper describes the susceptibility of single sensor identification to modelling error and simulations that preliminarily verified this characteristic. To make a robust evaluation from measurements of one floor of shear structures based on imprecisely identified parameters, a novel scheme is devised to approximately correct the mode shapes with respect to fictitious frequencies generated with a genetic algorithm; in particular, the scheme uses constrained minimization to take both the mathematical aspect and the realistic aspect of the mode shapes into account. The algorithm was validated by using a full-scale shear building. The differences between single-sensor and multiple-sensor estimations were analyzed. It was found that, as the number of accelerometers decreases, the error rises due to insufficient data and becomes very high when there is only one sensor. Moreover, when measurements for only one floor are available, the proposed method yields more precise and appropriate mode shapes, leading to a better estimation on the drift angle of the lower floors compared with a method designed for multiple sensors. As well, it is shown that the reduction in space complexity is offset by increasing the computation complexity.

Evaluation of a multi-stage convolutional neural network-based fully automated landmark identification system using cone-beam computed tomography-synthesized posteroanterior cephalometric images

  • Kim, Min-Jung;Liu, Yi;Oh, Song Hee;Ahn, Hyo-Won;Kim, Seong-Hun;Nelson, Gerald
    • The korean journal of orthodontics
    • /
    • v.51 no.2
    • /
    • pp.77-85
    • /
    • 2021
  • Objective: To evaluate the accuracy of a multi-stage convolutional neural network (CNN) model-based automated identification system for posteroanterior (PA) cephalometric landmarks. Methods: The multi-stage CNN model was implemented with a personal computer. A total of 430 PA-cephalograms synthesized from cone-beam computed tomography scans (CBCT-PA) were selected as samples. Twenty-three landmarks used for Tweemac analysis were manually identified on all CBCT-PA images by a single examiner. Intra-examiner reproducibility was confirmed by repeating the identification on 85 randomly selected images, which were subsequently set as test data, with a two-week interval before training. For initial learning stage of the multi-stage CNN model, the data from 345 of 430 CBCT-PA images were used, after which the multi-stage CNN model was tested with previous 85 images. The first manual identification on these 85 images was set as a truth ground. The mean radial error (MRE) and successful detection rate (SDR) were calculated to evaluate the errors in manual identification and artificial intelligence (AI) prediction. Results: The AI showed an average MRE of 2.23 ± 2.02 mm with an SDR of 60.88% for errors of 2 mm or lower. However, in a comparison of the repetitive task, the AI predicted landmarks at the same position, while the MRE for the repeated manual identification was 1.31 ± 0.94 mm. Conclusions: Automated identification for CBCT-synthesized PA cephalometric landmarks did not sufficiently achieve the clinically favorable error range of less than 2 mm. However, AI landmark identification on PA cephalograms showed better consistency than manual identification.