• Title/Summary/Keyword: Error Detector

Search Result 491, Processing Time 0.028 seconds

Accuracy Improvement of Boron Meter Adopting New Fitting Function and Multi-detector

  • Kong, Chidong;Lee, Hyunsuk;Tak, Taewoo;Lee, Deokjung;Kim, Si Hwan;Lyou, Seokjean
    • Nuclear Engineering and Technology
    • /
    • v.48 no.6
    • /
    • pp.1360-1367
    • /
    • 2016
  • This paper introduces a boron meter with improved accuracy compared with other commercially available boron meters. Its design includes a new fitting function and a multi-detector. In pressurized water reactors (PWRs) in Korea, many boron meters have been used to continuously monitor boron concentration in reactor coolant. However, it is difficult to use the boron meters in practice because the measurement uncertainty is high. For this reason, there has been a strong demand for improvement in their accuracy. In this work, a boron meter evaluation model was developed, and two approaches were considered to improve the boron meter accuracy: the first approach uses a new fitting function and the second approach uses a multi-detector. With the new fitting function, the boron concentration error was decreased from 3.30 ppm to 0.73 ppm. With the multi-detector, the count signals were contaminated with noise such as field measurement data, and analyses were repeated 1,000 times to obtain average and standard deviations of the boron concentration errors. Finally, using the new fitting formulation and multi-detector together, the average error was decreased from 5.95 ppm to 1.83 ppm and its standard deviation was decreased from 0.64 ppm to 0.26 ppm. This result represents a great improvement of the boron meter accuracy.

The Effect of Multiple Energy Detector on Evidence Theory Based Cooperative Spectrum Sensing Scheme for Cognitive Radio Networks

  • Khan, Muhammad Sajjad;Koo, Insoo
    • Journal of Information Processing Systems
    • /
    • v.12 no.2
    • /
    • pp.295-309
    • /
    • 2016
  • Spectrum sensing is an essential function that enables cognitive radio technology to explore spectral holes and resourcefully access them without any harmful interference to the licenses user. Spectrum sensing done by a single node is highly affected by fading and shadowing. Thus, to overcome this, cooperative spectrum sensing was introduced. Currently, the advancements in multiple antennas have given a new dimension to cognitive radio research. In this paper, we propose a multiple energy detector for cooperative spectrum sensing schemes based on the evidence theory. Also, we propose a reporting mechanism for multiple energy detectors. With our proposed system, we show that a multiple energy detector using a cooperative spectrum sensing scheme based on evidence theory increases the reliability of the system, which ultimately increases the spectrum sensing and reduces the reporting time. Also in simulation results, we show the probability of error for the proposed system. Our simulation results show that our proposed system outperforms the conventional energy detector system.

An Improved Phase Error Compensation for an Absolute Position Detector using Table Method (테이블 방법을 이용한 절대위치 검출기에 대한 개선된 위상 오차 보상)

  • Ahn, Ki-Ho;Kim, See-Hyun;Yang, Yoon-Gi;Lee, Chang-Su
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.10
    • /
    • pp.975-981
    • /
    • 2010
  • Existing error compensation method of industrial electronic absolute displacement detector only depends on skilled engineers. This paper proposes a new table method in order to automatize error compensation. An waveform changes according to the parallel resistance for each pole were tabularized and four waveforms were superimposed to minimize total phase error. These process was verified using simulink. As a result of applying proposed method to the real sensor, peak to peak error was reduced from $3.428^{\circ}$ to $0.879^{\circ}$. In this case, compensation resistance is $4.7k\Omega$ in B pole and $20k\Omega$ in C pole. This compensation rate is comparable to skilled engineers, and it takes 0.8 second which is far shorter than 15 minutes when expert does.

Investigating Optimal Aggregation Interval Size of Loop Detector Data for Travel Time Estimation and Predicition (통행시간 추정 및 예측을 위한 루프검지기 자료의 최적 집계간격 결정)

  • Yoo, So-Young;Rho, Jeong-Hyun;Park, Dong-Joo
    • Journal of Korean Society of Transportation
    • /
    • v.22 no.6
    • /
    • pp.109-120
    • /
    • 2004
  • Since the late of 1990, there have been number of studies on the required number of probe vehicles and/or optimal aggregation interval sizes for travel time estimation and forecasting. However, in general one to five minutes are used as aggregation intervals for the travel time estimation intervals for the travel time estimation and/or forecasting of loop detector system without a reasonable validation. The objective of this study is to deveop models for identifying optimal aggregation interval sizes of loop detector data for travel time estimation and prediction. This study developed Cross Valiated Mean Square Error (CVMSE) model for the link and route travel time forecasting, The developed models were applied to the loop detector data of Kyeongbu expressway. It was found that the optimal aggregation sizes for the travel time estimation and forecasting are three to five minutes and ten to twenty minutes, respectively.

Optimization of Blind Adaptive Decorrelating PIC Detector Performance in DS-CDMA System

  • Sirijiamrat, S.;Benjangkaprasert, C.;Sangaroon, O.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1962-1965
    • /
    • 2004
  • In this paper, the new algorithm for blind adaptive decorrelating parallel interference canceller detector in direct-sequence code division multiple access (DS-CDMA) synchronous communication systems is proposed. The goal of this paper is to improve the performance of the blind adaptive decorrelating parallel interference cancellation detector (BAD/PIC). The proposed blind adaptive decorrelating detector is using optimum step-size technique bootstrap algorithm as an initial stage of PIC, which does not require a training sequence. Therefore, this algorithm has a superior view of utilizing bandwidth and reduces the complexity of computation of inversion cross-correlation matrix. The computer simulation results show that the bit error rate performance of the proposed algorithm for the new structure of detector is better than that of the other detectors such as matched filters, the conventional PIC, and the blind adaptive decorrelating PIC detector.

  • PDF

A Hybrid Detection Technique for Multiple Input Multiple Output Systems in Fading Environment (감쇄 환경에서 여러 입력 여러 출력 시스템에 알맞은 혼합 검파 방식)

  • Oh Jong-Ho;An Tae-Hun;Song Iick-Ho;Park Ju-Ho;Park So-Ryoung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.9C
    • /
    • pp.897-904
    • /
    • 2006
  • Multiple input multiple output architectures, known to provide high spectral efficiencies, can provide the best performance in terms of the block error rate when a maximum likelihood (ML) detector is employed. The complexity of the ML detector, however, increases exponentially with the numbers of transmit antennas and signals in the constellation. The zero forcing (ZF) detector has been suggested as a reduced-complexity detection method at the cost of performance degradation. In order to improve the performance of the ZF detector while reducing the complexity of the ML detector, we propose a novel multistage decision method. Numerical results show that, despite the proposed detector has a lower complexity than the ML detector, the performance difference between the ML and proposed detectors is negligibly small at high SNR.

Computationally-Efficient Algorithms for Multiuser Detection in Short Code Wideband CDMA TDD Systems

  • De, Parthapratim
    • Journal of Communications and Networks
    • /
    • v.18 no.1
    • /
    • pp.27-39
    • /
    • 2016
  • This paper derives and analyzes a novel block fast Fourier transform (FFT) based joint detection algorithm. The paper compares the performance and complexity of the novel block-FFT based joint detector to that of the Cholesky based joint detector and single user detection algorithms. The novel algorithm can operate at chip rate sampling, as well as higher sampling rates. For the performance/complexity analysis, the time division duplex (TDD) mode of a wideband code division multiplex access (WCDMA) is considered. The results indicate that the performance of the fast FFT based joint detector is comparable to that of the Cholesky based joint detector, and much superior to that of single user detection algorithms. On the other hand, the complexity of the fast FFT based joint detector is significantly lower than that of the Cholesky based joint detector and less than that of the single user detection algorithms. For the Cholesky based joint detector, the approximate Cholesky decomposition is applied. Moreover, the novel method can also be applied to any generic multiple-input-multiple-output (MIMO) system.

On the Improvement of Error Performance in the Differential Detector for 3-h CPM (3-h CPM 차동 검파기의 오율 성능 개선)

  • 홍의식;한영열
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.17 no.3
    • /
    • pp.240-246
    • /
    • 1992
  • In the paper, the differential detection techniques of 3-h CPM signals whose modulation index is varied periodically are proposed and their error performances are analyzed. We select the modulation index sets which are proper to the differential detection and propose the differential detectors which detect symbol with 3 bits per smapling period of 3T and detect a bit per sampling period of T. Applying the nonredundant error correction circuit and viterbi algorithm to differential detection of 3-h CPM. We ascertain the error performances are improved.

  • PDF

3.125Gbps Reference-less Clock and Data Recovery using 4X Oversampling (4X 오버샘플링을 이용한 3.125Gbps급 기준 클록이 없는 클록 데이터 복원 회로)

  • Jang, Hyung-Wook;Kang, Jin-Ku
    • Journal of IKEEE
    • /
    • v.10 no.1 s.18
    • /
    • pp.10-15
    • /
    • 2006
  • In this paper, a clock and data recovery (CDR) circuit for a serial link with a half rate 4x oversampling phase and frequency detector structure without a reference clock is described. The phase detector (PD) and frequency detector (FD)are designed by 4X oversampling method. The PD, which uses bang-bang method, finds the phase error by generating four up/down signal and the FD, which uses the rotational method, finds the frequency error by generating up/down signal made by the PD output. And the six signals of the PD and the FD control an amount of current that flows through the charge pump. The VCO composed of four differential buffer stages generates eight differential clocks. Proposed circuit is designed using the 0.18um CMOS technology and operating voltage is 1.8V. With a 4X oversampling PD and FD technique, tracking range of 24% at 3.125Gbps is achieved.

  • PDF

Performance Improvement of Adaptive Noise Cancellation Using a Speech Detector

  • Park, Jang-Sik
    • The Journal of the Acoustical Society of Korea
    • /
    • v.15 no.2E
    • /
    • pp.39-44
    • /
    • 1996
  • The performance of two-channel adaptive noise canceller is ofter degraded by the weights perturbation due to the speech signal. In this paper, an adaptive noise canceller employing a speech detector and two adaptation algorithms which are switched according to the speech detector is proposed. When highly correlated speech signal is detected, the tap weights of the adaptive filter are adapted by the sign algorithm. On the other hand, the weights are adapted by the NLMS algorithm when silence is detected or when the characteristics of the noise propagation channel is changed. The employed speech detector utilizes the power ratio of the input and the output of an adaptive linear prediction-error filter. According to the computer simulation, the proposed method yields better performance than conventional ones.

  • PDF