• Title/Summary/Keyword: Error Conceal

Search Result 13, Processing Time 0.019 seconds

Error Concealment of MPEG-2 Intra Frames by Spatiotemporal Information of Inter Frames (인터 프레임의 시공간적 정보를 이용한 MPEG-2 인트라 프레임의 오류 은닉)

  • Kang, Min-Jung;Ryu, Chul
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.4 no.2
    • /
    • pp.31-39
    • /
    • 2003
  • The MPEG-2 source coding algorithm is very sensitive to transmission errors due to using of variable-length coding. When the compressed data are transmitted, transmission errors are generated and error correction scheme is not able to be corrected well them. In the decoder error concealment (EC) techniques must be used to conceal errors and it is able to minimize degradation of video quality. The proposed algorithm is method to conceal successive macroblock errors of I-frame and utilize temporal information of B-frame and spatial information of P-frame In the previous GOP which is temporally the nearest location to I-frame. This method can improve motion distortion and blurring by temporal and spatial errors which cause at existing error concealment techniques. In network where the violent transmission errors occur, we can conceal more efficiently severe slice errors. This algorithm is Peformed in MPEG-2 video codec and Prove that we can conceal efficiently slice errors of I-frame compared with other approaches by simulations.

  • PDF

Error Concealment Techniques for Visual Quality Improving (화질 향상을 위한 오류 은폐 기법)

  • Suh, Jae-Won
    • The Journal of the Korea Contents Association
    • /
    • v.6 no.2
    • /
    • pp.65-74
    • /
    • 2006
  • The MPEG-2 video compressed bitstream is very sensitive to transmission errors due to the complex coding structure of the MPEG-2 video coding standard. If one packet is lost or received with errors, not only the current frame will be corrupted, but also errors will propagate to succeeding frames within a group of pictures. Therefore, we employ various error resilient coding/decoding techniques to protect and reduce the transmission error effects. Error concealment technique is one of them. Error concealment technique exploits spatial and temporal redundancies of the correctly received video data to conceal the corrupted video data. Motion vector recovery and compensation with the estimated motion vector is good approach to conceal the corrupted data. In this paper, we propose various error concealment algorithms based on motion vector recovery, and compare their performance to those of conventional error concealment methods.

  • PDF

Motion Vector Recovery Based on Optical Flow for Error Concealment (전송 오류를 은닉하기 위한 옵티컬 플로우 기반의 움직임 벡터 복원)

  • Suh, Jae-Won;Ho, Yo-Sung
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.39 no.6
    • /
    • pp.630-640
    • /
    • 2002
  • The compressed video bitstream is very sensitive to transmission errors. If we lost packet or received with errors during the transmission, not only the current frame will be corrupted, but also errors will propagate to succeeding frames. Error concealment is a data recovery technique that enables the decoder to conceal effects of transmission errors by predicting the lost or corrupted video data from the previously reconstructed error free information. Motion vection recovery and motion compensation with the estimated motion vector is a good approach to conceal the corrupted macroblock data. In this paper, we prove that it is reasonable to use the estimated motion vector to conceal the lost macroblock by providing macroblock distortion models. After we propose a new motion vector recovery algorithm based on optical flow fields, we compare its performance to those of conventional error concealment methods. The proposed algorithm has smaller computational complexity than those of conventional algorithms.

Spatio-Temporal Error Concealment of I-frame using GOP structure of MPEG-2 (MPEG-2의 GOP 구조를 이용한 I 프레임의 시공간적 오류 은닉)

  • Kang, Min-Jung;Ryu, Chul
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.1C
    • /
    • pp.72-82
    • /
    • 2004
  • This paper proposes more robust error concealment techniques (ECTs) for MPEG-2 intra coded frame. MPEG-2 source coding algorithm is very sensitive to transmission errors due to the use of variable-length coding. The transmission errors are corrected by error correction scheme, however, they cannot be revised properly. Error concealment (EC) is used to conceal the errors which are not corrected by error correction and to provide minimum visual distortion at the decoder. If errors are generated in intra coded frame, that is the starting frame of GOP, they are propagated to other inter coded frames due to the nature of motion compensated prediction coding. Such propagation of error may cause severe visual distortion. The proposed algorithm in this paper utilizes the spatio-temporal information of neighboring inter coded frames to conceal the successive slices errors occurred in I-frame. The proposed method also overcomes the problems that previous ECTs reside. The proposed algorithm generates consistent performance even in network where the violent transmission errors frequently occur. Algorithm is performed in MPEG-2 video codec and we can confirm that the proposed algorithm provides less visible distortion and higher PSNR than other approaches through simulations.

Subblock Based Temporal Error Concealment of Intra Frame for MPEG-2 (서브 블록을 이용한 MPEG-2 인트라 프레임의 시간적 오류 은닉)

  • Ryu, Chul;Kim, Won-Rak
    • Proceedings of the KIEE Conference
    • /
    • 2005.05a
    • /
    • pp.167-169
    • /
    • 2005
  • The occurrence of a single bit error in transmission bitstream leads to serious temporal and spatial errors. Because moving picture coding as MPEG-2 based on block coding algorithm uses variable length coding and motion compensation coding algorithm. In this paper, we propose algorithm to conceal occurred error of I-frames in transmission channel using data of the neighboring blocks in decoder. We divide a damaged macroblock of I-frame into four sub blocks and compose new macroblock using the neighboring blocks for each sub block. We estimate the block with minimum difference value through block matching with previous frame for new macroblocks and replace each estimated block with damaged sub block in the same position. Through simulation results, the proposed algorithm will be applied to a characteristic of moving with effect and shows better performance than conventional error concealment algorithms from visual and PSNR of view.

  • PDF

An error concealment technique using directional interpolation in block-based image compression (블록 기반 영상압축에 있어서 방향성 보간을 이용한 에러 은닉 기법)

  • 김승종;정제창;최병욱
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.5
    • /
    • pp.915-927
    • /
    • 1997
  • In this paper, we propose an error concealment technique using directional interpolation in block-based image compression. In the proposed method the edge direction is determined by finding the maximum correlation coefficients of boundary pixels of blocks neighboring the errored block in spatial domain. Then the errored block is interpolated linearly or bilinearly along the determined edge direction. The proposed method can conceal the block error, the macro block error, and the slice error adaptively. Also, the parameters for the directional interpolation are represented by closed forms. When applied to compressed images, the proposed method shows superior subjective and objective quality to conventional error concealment methods.

  • PDF

Whole Frame Error Concealment with an Adaptive PU-based Motion Vector Extrapolation for HEVC

  • Kim, Seounghwi;Lee, Dongkyu;Oh, Seoung-Jun
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.4 no.1
    • /
    • pp.16-21
    • /
    • 2015
  • Most video services are transmitted in wireless networks. In a network environment, a packet of video is likely to be lost during transmission. For this reason, numerous error concealment (EC) algorithms have been proposed to combat channel errors. On the other hand, most existing algorithms cannot conceal the whole missing frame effectively. To resolve this problem, this paper proposes a new Adaptive Prediction Unit-based Motion Vector Extrapolation (APMVE) algorithm to restore the entire missing frame encoded by High Efficiency Video Coding (HEVC). In each missing HEVC frame, it uses the prediction unit (PU) information of the previous frame to adaptively decide the size of a basic unit for error concealment and to provide a more accurate estimation for the motion vector in that basic unit than can be achieved by any other conventional method. The simulation results showed that it is highly effective and significantly outperforms other existing frame recovery methods in terms of both objective and subjective quality.

Error Resilience Coding Techniques for Mobile Videotelephony (모바일 화상통신을 위한 오류강인 부호화 기법)

  • Suh, Jae-Won
    • The Journal of the Korea Contents Association
    • /
    • v.7 no.12
    • /
    • pp.303-310
    • /
    • 2007
  • Compressed video bitstreams are intended for real-time transmission over communication networks. Because video compression algorithms eliminate the temporal, spatial, and statistical redundancies, the coded video bitstreams are very sensitive to transmission errors. We propose an error resilient video coding technique to limit the effect of error propagation in low bit-rate video coding. The success of error resilient coding techniques relies on how accurately the transmission errors can be detected. To detect the transmission error, we propose a very simple error detection technique based on data hiding Next, we conceal the corrupted MB data using intra MB refresh and motion compensation with the estimated motion vector and compare the simulation results. This method will be useful in video communication in error Prone environment such as WCDMA networks.

Spatial Error Concealment Technique for Losslessly Compressed Images Using Data Hiding in Error-Prone Channels

  • Kim, Kyung-Su;Lee, Hae-Yeoun;Lee, Heung-Kyu
    • Journal of Communications and Networks
    • /
    • v.12 no.2
    • /
    • pp.168-173
    • /
    • 2010
  • Error concealment techniques are significant due to the growing interest in imagery transmission over error-prone channels. This paper presents a spatial error concealment technique for losslessly compressed images using least significant bit (LSB)-based data hiding to reconstruct a close approximation after the loss of image blocks during image transmission. Before transmission, block description information (BDI) is generated by applying quantization following discrete wavelet transform. This is then embedded into the LSB plane of the original image itself at the encoder. At the decoder, this BDI is used to conceal blocks that may have been dropped during the transmission. Although the original image is modified slightly by the message embedding process, no perceptible artifacts are introduced and the visual quality is sufficient for analysis and diagnosis. In comparisons with previous methods at various loss rates, the proposed technique is shown to be promising due to its good performance in the case of a loss of isolated and continuous blocks.

Channel-Adaptive Bidirectional Motion Vector Tracking over Wireless Packet Network (무선 패킷 네트워크에서의 채널 적응형 양방향 움직임 벡터 추적 기술)

  • Pyun, Jae-Young
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.44 no.1
    • /
    • pp.94-101
    • /
    • 2007
  • Streaming video is expected to become a key service in the developing heterogeneous wireless network. However, sufficient quality of service is not offered to video applications because of bursty packet losses. An effective solution for packet loss in wireless network is to perform a proper concealment at the receiver. However, most concealment methods can not conceal effectively the consecutively damaged macro blocks, since the neighboring blocks are lost. In the previous work, bidirectional motion vector tracking (BMVT) method has been proposed which uses the moving trajectory feature of the damaged macro blocks. In this paper, a channel-adaptive redundancy coding method for the better BMVT error concealment is presented. The proposed method provides enhanced video quality at the cost of a little bit overhead in the wireless error-prone network.