International Journal of Computer Science & Network Security
/
v.23
no.9
/
pp.129-133
/
2023
Classification or prediction problem is how to solve it using a specific feature to obtain the predicted class. A wheat seeds specifications 4 3 classes of seeds will be used in a prediction process. A multi linear regression will be built, and a prediction error ratio will be calculated. To enhance the prediction ratio an ANN model will be built and trained. The obtained results will be examined to show how to make a prediction tool capable to compute a predicted class number very close to the target class number.
Journal of the Korea Society of Computer and Information
/
v.10
no.5
s.37
/
pp.77-86
/
2005
In this paper, we designed a learning algorithm of LVQ that extracts classification errors and learns ones and improves classification performance. The proposed LVQ learning algorithm is the learning Networks which is use SOM to learn initial reference vectors and out-star learning algorithm to determine the class of the output neurons of LVQ. To extract pattern vectors which cause classification errors, we proposed the error-cause condition, which uses that condition and constructed the pattern vector space which consists of the input pattern vectors that cause the classification errors and learned these pattern vectors , and improved performance of the pattern classification. To prove the performance of the proposed learning algorithm, the simulation is performed by using training vectors and test vectors that are Fisher' Iris data and EMG data, and classification performance of the proposed learning method is compared with ones of the conventional LVQ, and it was a confirmation that the proposed learning method is more successful classification than the conventional classification.
Journal of the Institute of Electronics Engineers of Korea SP
/
v.46
no.3
/
pp.138-142
/
2009
We propose an effective voice-phishing detection algorithm based on discriminative weight training. The detection of voice phishing is performed based on a Gaussian mixture model (GMM) incorporaiting minimum classification error (MCE) technique. Actually, the MCE technique is based on log-likelihood from the decoding parameter of the SMV(Selectable Mode Vocoder) directly extracted from the decoding process in the mobile phone. According to the experimental result, the proposed approach is found to be effective for the voice phishing detection.
Journal of the Institute of Electronics Engineers of Korea SP
/
v.37
no.6
/
pp.38-47
/
2000
In pattern classification, the Bhattacharyya distance has been used as a class separability measure. Furthemore, it is recently reported that the Bhattacharyya distance can be used to estimate error of Gaussian ML classifier within 1-2% margin. In this paper, we propose a feature extraction method utilizing the Bhattacharyya distance. In the proposed method, we first predict the classification error with the error estimation equation based on the Bhauacharyya distance. Then we find the feature vector that minimizes the classification error using two search algorithms: sequential search and global search. Experimental reslts show that the proposed method compares favorably with conventional feature extraction methods. In addition, it is possible to determine how man, feature vectors arc needed for achieving the same classification accuracy as in the original space.
Journal of the Institute of Electronics Engineers of Korea SP
/
v.46
no.4
/
pp.76-81
/
2009
We propose an effective emotion recognition algorithm based on the minimum classification error (MCE) incorporating multi-modal system The emotion recognition is performed based on a Gaussian mixture model (GMM) based on MCE method employing on log-likelihood. In particular, the reposed technique is based on the fusion of feature vectors based on voice signal and galvanic skin response (GSR) from the body sensor. The experimental results indicate that performance of the proposal approach based on MCE incorporating the multi-modal system outperforms the conventional approach.
Journal of the Korean Data and Information Science Society
/
v.20
no.4
/
pp.757-764
/
2009
In discriminant analysis, we consider a special pattern which contains a block of missing observations. We assume that the two populations are equally likely and the costs of misclassification are equal. In this situation, we consider the bootstrap confidence intervals of the error rate in the circular models when the covariance matrices are equal and not equal.
The purpose of mathematics education is to develop the ability of transforming various problems in general situations into mathematics problems and then solving the problem mathematically. Various teaching-learning methods for improving the ability of the mathematics problem-solving can be tried. However, it is necessary to choose an appropriate teaching-learning method after figuring out students' level of understanding the mathematics learning or their problem-solving strategies. The error analysis is helpful for mathematics learning by providing teachers more efficient teaching strategies and by letting students know the cause of failure and then find a correct way. The following subjects were set up and analyzed. First, the error classification pattern was set up. Second, the errors in the solving process of the function problems were analyzed according to the error classification pattern. For this study, the survey was conducted to 90 first grade students of ${\bigcirc}{\bigcirc}$high school in Chung-nam. They were asked to solve 8 problems in the function part. The following error classification patterns were set up by referring to the preceding studies about the error and the error patterns shown in the survey. (1)Misused Data, (2)Misinterpreted Language, (3)Logically Invalid Inference, (4)Distorted Theorem or Definition, (5)Unverified Solution, (6)Technical Errors, (7)Discontinuance of solving process The results of the analysis of errors due to the above error classification pattern were given below First, students don't understand the concept of the function completely. Even if they do, they lack in the application ability. Second, students make many mistakes when they interpret the mathematics problem into different types of languages such as equations, signals, graphs, and figures. Third, students misuse or ignore the data given in the problem. Fourth, students often give up or never try the solving process. The research on the error analysis should be done further because it provides the useful information for the teaching-learning process.
The Journal of Korean Institute of Communications and Information Sciences
/
v.41
no.11
/
pp.1406-1409
/
2016
In this paper, we propose the heuristic signal grouping algorithm to estimate channel state value over full blind communication situation which means that there is no information about the modulation scheme and the channel state information between the transmitter and the receiver. Hereafter, using the constellation rotation method and the probability density function(pdf) the modulation scheme is determined to perform automatic modulation classification(AMC). Furthermore, the modulation type and a channel state value estimation capability is evaluated by comparing the proposed scheme with other conventional techniques from the simulation results in terms of the symbol error rate(SER) and the root mean square error (RMSE).
The Transactions of the Korean Institute of Electrical Engineers D
/
v.50
no.7
/
pp.350-353
/
2001
In general, the Least Square Error method is used for signal classification to measure distance in the $l^2$ metric or the $L^2$ metric space. A defect of the Least Square Error method is that it does not classify properly some waveforms, which is due to the property of the Least Square Error method: the global analysis. This paper proposes a new linear operator, the Integra-Normalizer, that removes the problem. The Integra-Normalizer possesses excellent property that measures the degree of relative similarity between signals by expanding the functional space with removing the restriction on the functional space inherited by the Least Square Error method. The Integra-Normalizer shows superiority to the Least Square Error method in measuring the relative similarity among one dimensional waveforms.
Journal of the Korean Data and Information Science Society
/
v.17
no.2
/
pp.269-278
/
2006
This paper presents the new hybrid data mining technique using error pattern, modeling of improving classification accuracy. The proposed method improves classification accuracy by combining two different supervised learning methods. The main algorithm generates error pattern modeling between the two supervised learning methods(ex: Neural Networks, Decision Tree, Logistic Regression and so on.) The Proposed modeling method has been applied to the simulation of 10,000 data sets generated by Normal and exponential random distribution. The simulation results show that the performance of proposed method is superior to the existing methods like Logistic regression and Discriminant analysis.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.