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Abstract

In discriminant analysis, we consider a special pattern which contains a block of
missing observations. We assume that the two populations are equally likely and the
costs of misclassification are equal. In this situation, we consider the bootstrap confi-
dence intervals of the error rate in the circular models when the covariance matrices
are equal and not equal.

Keywords: Block of missing observations, bootstrap confidence interval, circular model,
error rate, linear combination classification statistic, Monte Carlo study.

1. Introduction

In discriminant analysis the problem is to classify a px1 observation X of unknown origin
to one of several distinct populations using an appropriate classification rule. In this paper it
will be assumed that there are two distinct populations which are multivariate normal. We
also assume that the two populations are equally likely and the costs of misclassification are
equal. The classification rule depends on the situation when the training samples include
missing values or not. Assuming that the covariance matrices are circular, we make an
appropriate transformation which reduces the circular matrices to canonical forms. The
discriminant function is given when the populations are multivariate normal with different
circular matrices and the linear combination statistic is used when a block of observations
is missing. We consider the bootstrap confidence intervals of the error rate in the circular
models when the covariance matrices are equal and not equal.
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2. Discriminant analysis in circular models

Let X, a px1 vector, be an observation which is known to have come from one of two
multivariate normal populations. Denote the ith population by πi which is N(µi,Σi) for
i = 1, 2. We assume that Σi is positive definite and circular, i.e. Σi is of the form

σ2
i


1 ρ1 ρ2 ρ3 · ρ2 ρ1

ρ1 1 ρ1 ρ2 · ρ3 ρ2

ρ2 ρ1 1 ρ1 · ρ4 ρ3

...
...

...
...

...
...

ρ1 ρ2 ρ3 ρ4 · ρ1 1

 . (2.1)

It is given in Wise (1955) that the matrix in (2.1) can be transformed into canonical form.
Thus there exists an orthogonal matrix L with (m,n)th element

lmn = p−1/2

{
cos

2π
p

(m− 1)(n− 1) + sin
2π
p

(m− 1)(n− 1)

}

such that L′ΣiL = diag(σ2
i1, σ

2
i2, . . . , σ

2
ip). Since L is independent of the elements in Σ1 and

Σ2, the discriminant function is equivalent to that when the covariance matrices are diagonal.
This is true because the discriminant function derived by the likelihood ratio procedure is
invariant under any linear transformation.

2.1. Discriminant function with complete data

Since the circular matrix can be transformed into canonical form, we may let Σi = diag(σ2
i1,

σ2
i2, . . . , σ2

ip), i = 1, 2. Han (1970) derived the discriminant function by using the likelihood
ratio procedure. It is proportional to

(X − µ2)′Σ−1
2 (X − µ2)− (X − µ1)′Σ−1

1 (X − µ1).

Substituting µi and Σi we obtain, apart from a constant,

V =
p∑
j=1


(

1
σ2

2j

−
1
σ2

1j

)(
xj −

µ2j/σ
2
2j − µ1j/σ

2
1j

1/σ2
2j − 1/σ2

1j

)2
 , (2.2)

where xj and µij are the jth component of X and µi, i = 1, 2, respectively. We classify X
into π1 if V > k and into π2 if V ≤ k for some suitable choice of the constant k. To find
the distribution of V , we shall assume that σ2

1j > σ2
2j for all j, or equivalently Σ1 − Σ2 is

positive definite. Hence 1/σ2
2j − 1/σ2

1j > 0. Let

Zj =

√
1
σ2

2j

−
1
σ2

1j

(
xj −

µ2j/σ
2
2j − µ1j/σ

2
1j

1/σ2
2j − 1/σ2

1j

)
.
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Then V =
∑p
j=1 Z

2
j . When X comes from πi, i=1 or 2, Zj are independently distributed as

N(ζij , τ2
ij) where

ζij =

√
1
σ2

2j

−
1
σ2

1j

(
µij −

µ2j/σ
2
2j − µ1j/σ

2
1j

1/σ2
2j − 1/σ2

1j

)
, τ2

ij = σ2
ij

(
1
σ2

2j

−
1
σ2

1j

)
.

Therefore V is distributed as the sum of τ2
ij · χ′21 (δ2

ij), where χ′21 (δ2
ij) is a non-central χ2

distribution with 1 degree of freedom and non-centrality parameters δ2
ij = ζ2

ij/τij . It is
not easy to obtain the distribution in a closed form. Patnaik (1949) has considered a χ2

approximation to the distribution of the sum by fitting the first two moments. Thus the
distribution may be approximated by cαχ2

να where

cα =

∑
j τ

4
ij + 2

∑
j τ

2
ijζ

2
ij∑

j τ
2
ij +

∑
j ζ

2
ij

, να =
1
cα

(τ2
ij +

∑
j

ζ2
ij).

2.2. Discriminant function with incomplete data

In this paper we consider a special pattern which contains a block of missing observations
in circular models. Instead of estimating the parameters, we construct two different discrim-
inant functions from the complete data and incomplete data, respectively, and then a linear
combination of these two linear discriminant functions is used to obtain the classification
rule.

When the populations are multivariate normal with equal covariance matrix, that is,
πi : N(µi,Σ), Chung and Han (2000) derived the linear combination statistic when a block
of observations is missing.

Let us partition the p x 1 observation X as follows.

X =
[
Y
Z

]
,

where Y is a k×1 vector and Z is a (p−k)×1 vector (1 ≤ k < p). Suppose random samples
of sizes mi, containing no missing values,

Xij =
[
Yij
Zij

]
, i = 1, 2, ; j = 1, 2, . . . ,mi, are available from

Np(µi,Σ) = Np

([
µyi
µzi

]
,

[∑
yy

∑
zy∑

yz

∑
zz

])
,

and random samples of sizes ni−mi, which contain only the first k-components Yij(kx1), i =
1, 2; j = mi + 1, . . . , ni, are available from Nk(µyi,

∑
yy). We denote by Xij , i = 1, 2; j =

1, . . . ,mi, the complete observations, and by Yij , i = 1, 2; j = 1, . . . , ni, the incomplete
observations. Hence the data have the special pattern of missing values where a block of
variables is missing on ni−mi observations, and the remaining observations are all complete.
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We can construct two linear discriminant functions. The first linear discriminant function
is based on the observations, Xij , i = 1, 2; j = 1, . . . ,mi . We have

Wx = (X̄1 − X̄2)′S−1
xx

[
X −

1
2
(X̄1 − X̄2)

]
,

where

X̄i =
1
mi

mi∑
j=1

Xij =
[
Ȳi1
Z̄i

]
, Ȳi1 =

1
mi

mi∑
j=1

Yij , Z̄i =
1
mi

mi∑
j=1

Zij , i = 1, 2,

Sxx =
2∑
i=1

mi∑
j=1

(Xij − X̄i)(Xij − X̄i)′/νx, νx = m1 +m2 − 2.

The second linear discriminant function is based on the incomplete observations, Ȳij(kx1), i =
1, 2; j = 1, 2, . . . , ni. We have

Wy = (Ȳ1 − Ȳ2)′S−1
yy

[
Y −

1
2
(Ȳ1 − Ȳ2)

]
, where Ȳi =

1
ni

[
miȲi1 + (ni −mi)Ȳi2

]
,

Ȳi2 =
1

ni −mi

ni∑
j=mi+1

Yij , Syy =
2∑
i=1

ni∑
j=1

(Yij − Ȳi)(Yij − Ȳi)′/νy, νy = n1 + n2 − 1.

Now we combine the two linear discriminant functions and construct the classification rule
which is a linear combination of Wx and Wy , namely

Wc = cWx + (1− c)Wy, 0 ≤ c ≤ 1. (2.3)

Now we consider the linear combination statistic when the populations are multivariate
normal with unequal covariance matrix. When a block of observations is missing in circular
models, we have the discriminant function.

Wc = cWx + (1− c)Wy, 0 ≤ c ≤ 1,

Wx = (X − X̄2)′S−1
2 (X − X̄2)− (X − X̄1)′S−1

1 (X − X̄1),

Wy = (Y − Ȳ2)′Sy2(Y − Ȳ2)− (Y − Ȳ1)′S−1
y1 (Y − Ȳ1),

where

c =

(
1
m1

+
1
m2

)−1

D2

(
1
m1

+
1
m2

)−1

D2 +

(
1
n1

+
1
n2

)−1

D2
y

,
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D2 = (X̄1 − X̄2)′S−1(X̄1 − X̄2), D2
y = (Ȳ1 − Ȳ2)′S−1

y (Ȳ1 − Ȳ2),

S =
S1

m1
+
S2

m2
, Si =

1
mi − 1

mi∑
j=1

(Xij − X̄i),

Sy =
Sy1

n1
+
Sy2

n2
, Syi =

1
ni − 1

ni∑
j=1

(Yij − Ȳi).

Substituting X̄i, Si, Ȳi and Syi we obtain apart from a constant,

Vx =
p∑
j=1


(

1
s2

2j

−
1
s2

1j

)(
xj −

x̄2j/s
2
2j − x̄1j/s

2
1j

1/s2
2j − 1/s2

1j

)2
 for Wx,

Vy =
k∑
j=1


(

1
s2
y2j

−
1
s2
y1j

)(
xj −

ȳ2j/s
2
y2j − ȳ1j/s

2
y1j

1/s2
y2j − 1/s2

y1j

)2
 for Wy.

Then Wc = cVx + (1− c)Vy, 0 ≤ c ≤ 1.
The unconditional cdf of Vx and Vy are given (Han, 1970). The distribution of Wc is very

complicated.
Now we consider the conditional distribution given the sample statistics. Given sample

statistics, Vx is distributed as the sum of τ∗2ij · χ′21 (δ∗2ij ), where χ′21 (δ∗2ij ) is a non-central
distribution χ2 with 1 degree of freedom and non-centrality parameters

δ∗2ij =
ζ∗2ij
τ∗2ij

,

where ζ∗ij =

√
1
s2

2j

−
1
s2

1j

(
µij −

x̄2j/s
2
2j − x̄1j/s

2
1j

1/s2
2j − 1/s2

1j

)
, τ∗2ij = σ2

ij

(
1
s2

2j

−
1
s2

1j

)
.

Also, given the statistics, Vy is distributed as the sum of τ∗2yij · χ′21 (δ∗2yij), where χ′21 (δ2
yij) has

non-centrality parameters δ∗2yij = ζ∗2yij/τ
∗2
yij , where

ζ∗yij =

√
1
s2
y2j

−
1
s2
y1j

(
µyij −

ȳ2j/s
2
y2j − ȳ1j/s

2
y1j

1/s2
y2j − 1/s2

y1j

)
, τ∗2yij = σ2

yij

(
1
s2
y2j

−
1
s2
y1j

)
.

The conditional probability of misclassifying an observation X from π1 and π2 by Wc is
given by

β∗1n = Pr(Wc < k|x̄ij , ȳij , s2
ij , s

2
yij , x, y ∈ π1)

= Pr


c p∑

j=1

τ∗2ij χ
′2
1 (δ∗2ij ) + (1− c)

k∑
j=1

τ∗2yijχ
′2
1 (δ∗2yij)

 < k

 .

Similarly,

β∗2n = Pr(Wc ≥ k|x̄ij , ȳij , s2
ij , s

2
yij , x, y ∈ π2)
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= Pr


c p∑

j=1

τ∗2ij χ
′2
1 (δ∗2ij ) + (1− c)

k∑
j=1

τ∗2yijχ
′2
1 (δ∗2yij)

 ≥ k
 .

Hence the conditional error rate, with equal prior probability, is defined as

β∗n =
1
2
(β∗1nβ

∗
2n). (2.4)

We use Patnaik’s method to approximate it by a constant multiple of a central chi-square
distribution. The distribution of Vx may be approximated by cxχ2

νx , where

cx =

∑
j τ
∗4
ij + 2

∑
j τ
∗2
ij ζ
∗2
ij∑

j τ
∗2
ij +

∑
j ζ
∗2
ij

, νx =
1
cx

(
∑
j

τ∗2ij +
∑
j

ζ∗2ij ).

Also, the distribution of Vy may be approximated by cyχ2
νy , where

cy =

∑
j τ
∗4
yij + 2

∑
j τ
∗2
yijζ

∗2
yij∑

j τ
∗2
yij +

∑
j ζ
∗2
yij

, νy =
1
cy

(
∑
j

τ∗2yij +
∑
j

ζ∗2yij).

The conditional probability of misclassifying an observation X from π1and π2 by Wc is given
by

β∗1c = Pr(Wc < k|x̄ij , ȳij , s2
ij , s

2
yij , x, y ∈ π1) = Pr

{(
c · cxχ2

νx + (1− c)cyχ2
νy

)
< k

}
,

β∗2c = Pr(Wc < k|x̄ij , ȳij , s2
ij , s

2
yij , x, y ∈ π2) = Pr

{(
c · cxχ2

νx + (1− c)cyχ2
νy

)
≥ k

}
.

Hence the conditional error rate, with equal prior probability, is defined as

β∗c =
1
2
(β∗1c + β∗2c). (2.5)

3. Bootstrap confidence interval when training samples do not
contain missing values

Let the populations be multivariate normal with equal covariance matrix, that is, πi :
N(µi,Σ), i = 1, 2.

We now consider the bootstrap confidence interval for the conditional error rate, which is
defined as α = Φ(−∆/2), where ∆2 = (µ1 − µ2)′Σ−1(µ1 − µ2), when the training samples
contain no missing values. The bootstrap method is a resampling technique using Monte
Carlo simulation (Efron, 1982). In our situation, independent random samples of sizes n1

and n2 with replacement are taken from the two training samples respectively. An estimator
α̂∗ of α based on the bootstrap sample is obtained by using α̂ = Φ(−D/2), where D2 =
(X̄1 − X̄2)′S−1(X̄1 − X̄2) which is the Mahalanobis squared distance ∆2. This process is
repeated independently a large number B of times. Then bootstrap confidence interval for
α can be obtained from the B values of α̂∗ . Let α̂∗(i) denote the i-th ordered value, so that
α̂∗(1) ≤ α̂

∗
(2) ≤ . . . ≤ α̂

∗
(B).
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There are several methods to construct the bootstrap confidence interval. We will con-
sider the percentile method, bias-corrected percentile method, accelerated bias-corrected
percentile method to construct the confidence interval (Efron, 1982, 1987; Buckland, 1983,
1984, 1985; Hall, 1986a, 1986b; Hinkley, 1988; DiCiccio and Romano, 1988; among others).
These three types of 100(1− 2η)% confidence interval are presented as follows:

Percentile method. The confidence interval is given by (α̂∗(r), α̂
∗
(s)), where r = (B + 1)η,

and s = (B + 1)(1− η), both rounded to nearest integer, subject to r + s = B + 1.
Bias-corrected percentile method. Suppose α̂∗(q) < α̂ < α̂∗(q+1), where α̂ is calculated from

the original samples. That is, q of the B bootstrap estimates for α are smaller than α̂. Define

zo = Φ−1(q/B), ηBL = Φ(2zo − zη) and ηBR = Φ(2zo + zη),

where Φ(zη) = 1− η and Φ denotes the cumulative standard normal distribution. Then the
confidence interval is given by (α̂∗(j), α̂

∗
(k)), where j = (B + 1)ηBL and k = (B + 1)ηBR.

Accelerated bias-corrected percentile method. Define

ηAL = Φ(zo +
zo − zη

1− a(zo − zη)
), and ηAR = Φ(zo +

zo + zη

1− a(zo + zη)
),

where

a =
1
6


B∑
i=1

(α̂∗i − ¯̂α∗)3/

[
B∑
i=1

(α̂∗i − ¯̂α∗)2

]3
2

 ,
which is called the acceleration constant, and ¯̂α∗ is the mean of the B bootstrap estimates
for α̂∗i , i = 1, . . . , B.

Then the confidence interval is given by (α̂∗(u), α̂
∗
(v)), where u = (B + 1)ηAL and v =

(B + 1)ηAR.
Note that ηAR and ηAL become ηBR and ηBL if a equals 0. If zo is zero, then ηBR and

ηBL become η.
We evaluate the bootstrap confidence intervals for the conditional error rate (Chung and

Han, 2000) when the training samples come from the circular models in which the covariance
matrix has the equal covariance matrix.

4. Bootstrap confidence interval when training samples contain
missing values

First, when the covariance matrices are equal, we consider the bootstrap confidence inter-
vals for the conditional error rates using Wc (Chung and Han, 2000) in circular models.

Also we will consider the bootstrap confidence interval for the conditional error rate β∗n
and β∗c in (2.4) and (2.5) using Wc. The conditional error rate can be estimated by sub-
stituting the estimate σ̂2

ij , µ̂ij , σ̂
2
yij and µ̂yijfor σ2

ij , µij , σ
2
yij and µyij in (2.4) and (2.5)

respectively. Let µ̂i = [Ȳ (i), Z̄(i)]′ and µ̂yi = Ȳ (i) be the estimate of µi and µiy from
(2.4) and (2.5). For the variances, let σ̂2

cij =
∑mi
l=1(xijl − x̄ij)2/(mi − 1), i = 1, 2, j =
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1, 2, · · · , p, be the estimates from the complete observations of sizes mi. Also let σ̂2
Iij =∑ni

l=mi+1(yijl − ȳij)2/(ni −mi) be the estimates from the incomplete observations of sizes
ni − mi using only Y observations, i = 1, 2, j = 1, 2, . . . , k. Then for σ2

ij , we suggest
the combined estimates σ̂2

ij = miσ̂
2
cij/ni + (ni −mi)σ̂2

Iij/ni, i = 1, 2, j = 1, 2, . . . , k, and
σ̂2
ij = σ̂2

cij , i = 1, 2, j = k + 1, . . . , p. For σ2
yij , we use σ̂2

ij , i = 1, 2, j = 1, 2, . . . , k.
We will use these estimates in the construction of the bootstrap confidence intervals for

the conditional error rate when the training samples contain missing observations. Basically
the same procedure described for α is applied in this situation for getting the three types of
the bootstrap confidence intervals, i.e., the percentile method, the bias-corrected percentile
method, and the accelerated bias-corrected method. In order to evaluate the properties of
the confidence intervals, we conduct a similar Monte Carlo study described for the optimal
error rate.
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