• Title/Summary/Keyword: Erosion rate

Search Result 534, Processing Time 0.022 seconds

CMP properties of $SnO_2$ thin film ($SnO_2$ 박막의 CMP 특성)

  • Lee, Woo-Sun;Choi, Gwon-Woo;Ko, Pil-Ju;Hong, Kwang-Jun;Seo, Young-Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.184-187
    • /
    • 2003
  • As the integrated circuit device shrinks to the smaller dimension, the chemical mechanical polishing (CMP) process was required for the global planarization of inter-metal dielectric(IMD) lyaer with free-defect. The effect of alternative commerical slurries pads, and post-CMP cleaning alternatives are discuess, with removal rate, scratch dentisty, surface roughness, dishing, erosion and particulate density used as performance metrics. we investigated the performance of $SnO_2-CMP$ process using commonly used silica slurry, ceria slurry, tungsten slurry. This study shows removal rate and nonuniformity of $SnO_2$ thin film used to gas sensor by using Ceria, Silica, W-Slurry after CMP process. This study also shows the relation between partical size and CMP with partical size analysis or used slurry.

  • PDF

Studies on the Development of Accelerating Measures of Establishment of Vegetation on Bare Slopes (황폐산지(荒廢山地)의 속성녹화공법개발(速成綠化工法開發)에 관(關)한 연구(硏究))

  • Woo, Bo-Myeong
    • Journal of Korean Society of Forest Science
    • /
    • v.24 no.1
    • /
    • pp.1-24
    • /
    • 1974
  • A national programme of erosion control for soil and water conservation needs to be based on factual information about rates and quantities of soil erosion and of water runoff. The best and simplest way of reducing sedimentation pollution is to prevent or control the erosion at its sources. Steeply sloping earth banks are liable to both surface erosion and land-slides and the key to the control of these form of erosion lies with drainages and dense vegetation establishment including surface mulching on the slopes. Micro-plots having $1.6m^2$ (1 metre in width and 1.6 metres in slope length, and 1:1.2 in gradient) of banking slopes on the coarse sand soil are used to establish the order of magnititude of the difference in controlling of soil erosion and water runoff, and in potentiality of execution in consideration of the values of landscapes, performed on the 2 repetetions of six-experiment plots consisted of five surface mulches including seedings and one bare slope as a control treatment. The main results obtained may be summarized as follows: 1. The significant difference is realized in the quantities of soil erosion between the measures of six treatments. 2. Excepting the differences between treatment III and VI, the significant difference is realized in the rate of surface runoff between each treatment measures. 3. Both measures of treatment II and IV are recognized as the most effective measures in controlling the soil erosion and water runoff and also in establishing the ground vegetation. (Treatment II is a measures of the coarse straw-mat mulchings on the micro-strip seedings, Treatment IV is a measures of the "SPRAY-ON method" on the micro-strip seedings). In consideration of the potentiality of execution as well as the value of landscapes, the measures of treatment II could be recommendable for establishing the vegetation cover on the denuded gentle slopes in hillsides while the measures of treatment IV could be suitable for accelerating the establishment of vegetation on steeply sloping earth banks and cuts.

  • PDF

Mechanical and Thermal Properties of Needle Punched Nonwoven Carbon/Phenol Composite (니들펀칭 부직포 탄소/페놀 복합재료의 역학적 성질 및 열적 성질에 관한 연구)

  • 정경호;강태진
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.11a
    • /
    • pp.50-53
    • /
    • 2000
  • The effect of punching density on the mechanical and thermal properties of nonwoven needle-punched carbon/phenol composite was studied. The carbonized preforms were farmed into composites with phenol resin. The interlaminar shear, tensile and flexural strengths were increased with increasing punching density. However, excessive punching density decreased interlaminar shear and tensile strengths. Erosion rate of carbon/phenol composite was decreased with increasing punching density

  • PDF

Cross-sectional Changes of Ridge Traversing Trail in Jirisan National Park (지리산국립공원 종주등산로의 횡단면 변화 - 노고단~삼도봉 구간을 중심으로 -)

  • Kim, Taeho;Lee, Seungwook
    • Journal of the Korean association of regional geographers
    • /
    • v.19 no.2
    • /
    • pp.234-245
    • /
    • 2013
  • In order to examine the amount and rate of soil erosion on Ridge Traversing Trail in Jirisan National Park, a cross-sectional area of hiking trail were monitored at 16 sites in Nogodan - Samdobong section from November 2011 to April 2012. Although all sites demonstrates an enlarged cross-section of trail, the amount of soil erosion varies from site to site: 54.9 to $908.8cm^2$. It suggests that the erosional rate ranges from $0.1cm^2/day$ to $1.72cm^2/day$. The erosional amount is also varied with a trail type: $109.3cm^2$ for a shallow gully-like trail to $573.2cm^2$ for a unilateral trail. However, the cross-sectional change is larger on a sidewall than a tread irrespective of a trail type. The erosional amounts of November to April are smaller than that of May to October. In particular, the erosional amount of November 2011 to April 2012 is smaller than the depositional amount, implying a reduced cross-section of trail. Pipkrake action puts loose soil particles on a sidewall on March and April, and then rainwash due to a heavy rainfall takes them away after May. It seems to be the most predominant erosional process in Ridge Traversing Trail. A sidewall facing north shows a larger amount of erosion than a sidewall facing south. It also implies a difference in the development of a pipkrake according to an aspect. The small amount of erosion and cross-sectional decrease, which is usually observed on April, results from the combined effect of frost heaving, pipkrake action, a small rainfall and a temporary suspension of trampling. It is necessary to establish the monitoring system of trail erosion in terms of the management of hiking trail in a mountain national park.

  • PDF

Morphologic Response of Gravel Beach to Typhoon Invasion - A Case Study of Gamji Beach Taejongdae in Busan (태풍 내습 시 자갈 해빈의 지형반응 - 부산 태종대 감지 해빈의 사례)

  • Lee, Young Yun;Chang, Tae Soo
    • Journal of the Korean earth science society
    • /
    • v.41 no.1
    • /
    • pp.19-30
    • /
    • 2020
  • To understand the impact of typhoons on Gamji gravel beach Taejongdae in Busan, we carried out beach profiling using a VRS-GPS system and a Drone photogrammetry for the typhoons 'Kong-rey' invaded in October 2018 and 'Danas' in July 2019. In addition, grain sizes are analyzed to investigate the overall distribution pattern of gravels on the beach, and the beach topography is surveyed periodically to confirm the recovery rate of the beach. Grain-size analysis reveals that mean gravel sizes, in general, become finer from -6.2Φ to -5.4Φ towards the east in the seashore line direction. Variation in mean sizes is obviously observed in the cross-shore direction. Gravels in the swash zone are relatively fine about -4.5Φ in size and equant in shape, whereas the coarse and oblate gravels ranged from -5Φ to -6Φ are found in the berm. Gamji gravel beach particularly has two lines of berms: a lower berm situated facing beach and an upper berm about 10 m landward. After the typhoon Kong-rey passed by, about 1.4 m of severe erosion in upper berm occurred, and the berm eventually disappeared. On the backshore of the upper berm about 50 cm of erosion took place so that the elevation became lower. However, tangible erosion was not observed in the lower berm. When typhoon Danas hit, rated as mild storm, both upper and lower berm were eroded out. However, about 50 cm of deposition occurred only in the backshore. Only three days later, the new lower berm was formed, meaning that sedimentation rate must be high. This result indicates that Gamji gravel beach is recovered very fast from erosion caused by the typhoons when it is under the fair-weather condition even though beach morphology changes dramatically in a short period of time. Gravel beach is estimated to be or evaluated very resilient to typhoon erosion.

A STUDY ON THE ENAMEL EROSION BY FERMENTED MILKS (수종 유산균 발효유의 법랑질 침식효과에 대한 연구)

  • Sim, Jeung-Ho;Jeong, Tae-Sung;Kim, Shin
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.31 no.4
    • /
    • pp.555-563
    • /
    • 2004
  • The pH of beverages is known to be low and have, therefore, been implicated in the increasing incidence of erosion. Erosion is believed to be the predominant cause of teeth wear in children and young adults, although there will always be a contribution from attrition and abrasion. The aim of the present study was to evaluate the effect of yogurt on the progression of erosive demineralization in human enamel using demineralization model in vitro. In 4 yogurts, available on the market, pH, buffering capacity and the concentrations of calcium, phosphate and fluoride were determined. The buffering effect was determined by titration with NaOH. 50 milliliters of each drink was then titrated with 1M sodium hydroxide, added in 0.5 milliliters increments, until the pH reached about 7. Human deciduous enamel(n=40) samples were divided into four groups and exposed to 80ml of the yogurt for 30,60, 90 and 120min. Enamel surface microhardness(VHN) was examined before and after each exposure. 1. The average PH of fermented milk was 3.77 and this pH value was acidic enough to cause tooth erosion. 2. All of the fermented milks were found to be erosive(p<0.05) 3. The teeth exposed to the fermented milk all showed erosion like lesions and microhardness measurements showed that enamel surface hardness decreased proportionately with increased time of immersion in all tooth specimen groups. 4. After immersion for 30 and 60 minutes, reduction rate of microhardness values was not significantly different between the groups(p>0.05). However, after 90 and 120 minutes, reduction rate of each group was significantly different(p<0.05).

  • PDF

Studies on the Effects of Several Factors on Soil Erosion (토양침식(土壤侵蝕)에 작용(作用)하는 몇가지 요인(要因)의 영향(影響)에 관(關)한 연구(硏究))

  • Woo, Bo Myeong
    • Journal of Korean Society of Forest Science
    • /
    • v.29 no.1
    • /
    • pp.54-101
    • /
    • 1976
  • This study was conducted on the major factors affecting soil erosion and surface run-off. In order to investigate the processes and mechanisms of soil erosion on denuded forest-land in Korea, and to systematize the magnitudes of influences and interactions between individual factors, the five major factors adopted in these experiments are soil textures (coarse sand and clay loam), slope steepness ($10^{\circ}$, $20^{\circ}$, $30^{\circ}$ and $40^{\circ}$), rainfall intensities (50, 75 and 100mm/hr), slope mulching methods (bare, coarse straw-mat mulching, grass mulching and anti-erosion liquid mulching) and vegetation densities (sparse, moderate and dense). The processes and mechanisms of soil erosion, and the effects of mulchings on soil erosion as well as surface run-off rates were studied algebraically with four parts of laboratory experiments under the simulated rainfall and another part of field experiment under the natural rainfall. The results in this study are summarized as follows: 1. Experiment factors and surface run-off rates The surface run-off rates under the natural rainfall were resulted about 24.7~28.7% from the bare slopes, about 14.0~16.4% from the straw-mat mulched slopes, about 7.9~9.1% from the liquid mulched slopes, and about 5.6~7.2% from the grass mulched slopes respectively. The surface run-off rates under the simulated rainfall differed greatly according to the rainfall intensity and the mulching method. 2. Magnitudes of influences and interactions of the individual factor on the surface run-off rates. The experimental analyses on the major factors(soils, slopes, rainfalls, mulchings and vegetations) affecting the rates of surface run-off, show that the mean differences of surface run-off rate are significant at 5% level between the soil texture factors, among the slope steepness factors, among the rainfall intensity factors, among the mulching method factors, and among the vegetation density factors respectively. The interactions among the individual factor have a great influence(significant at 1% level) upon the rate of surface run-off, except for the interactions of the factors between soils and slopes; between slopes and vegetations; among soils, slopes and rainfalls; and among soils, slopes and mulchings respectively. On the bare slopes under the simulated rainfall, the magnitude of influences of three factors(soils, slopes and rainfalls) affecting the rate of surface run-off is in the order of the factor of rainfalls, soils and slopes. The magnitude of influences of three factors (soils, rainfalls and mulchings) affecting the rate of surface run-off, on the mulched slopes under the simulated rainfall is in the order of the factor of mulchings, rainfalls and soils and that of influences of the factor of soils, slopes and mulchings is in the order of the factor of mulchings, soils and slopes. On the vegetation growing slopes under the simulated rainfall, the magnitude of influences of three factors (soils, slopes and vegetations) affecting the rate of surface run-off is in the order of the factor of vegetations, soils and slopes. In the same condition of treatments on the field experiment under the natural rainfall, the order of magnitude of influences affecting the rate of surface run-off is the factor of mulchings, soils and slopes. 3. Experiment factors and soil losses The soil losses of the experiment plots differed according to the factors of soil texture, slope steepness, rainfall intensity and mulching method. The soil losses from the coarse soil were increased about 1.1~1.3 times as compared with that of fine soil under the natural rainfall, while the soil losses from the fine soil were increased about 1.2~1.3 times compared with that of coarse soil under the simulated rainfall. The equation of $E=aS^b$ (a, b are constant) between the slope steepness (log S) and soil losses (log E) under the simulated rainfall were developed. The equation of $E=aI^b$ (a, b are constant) between the rainfall intensity (log I) and soil losses (log E) were developed, and b values have a decreasing tendency according to the increase of the slope steepness and rainfall intensity. The soil losses under the natural rainfall were appeared about 38~41% from the coarse straw-mat mulched slopes, about 20~22% from the liquid mulched slopes, about 14~15% from the grass mulched slopes as compared with that of the bare slopes respectively. The soil loss from the vegetation plots showed about 7.1~16.4 times from the sparse plot, about 10.0~17.9 times from the moderate plot and about 11.1~28.1 times from the dense plot as compared with that of the bare slopes. 4. Magnitudes of influences and interactions of the individual factor on the soil erosion. The experimental analyses on the major factors(soils, slopes, rainfalls, mulchings and vegetations) affecting the soil erosion, show that the mean differences of soil losses are highly significant between the soil texture factors, among the slope steepness factors, among the rainfall intensity factors, among the mulching method factors and among the vegetation density factors respectively. The interactions among the individual factor have mostly great influences upon the soil erosion. The magnitude of influences of three factors (soils, slopes and rainfalls) affecting the soil erosion on the bare slopes under the simulated rainfall is in order of the factor of rainfalls, soils and slopes. On the mulched slopes under the simulated rainfall, the magnitude order of influences of three factors(soils, rainfalls and mulchings) affecting the soil erosion is the factor of mulchings, rainfalls and soils, and the order of influences of factor of soils, slopes and mulchings is the factor of mulchings, soils and slopes. On the vegetation growing slopes under the simulated rainfall, the magnitude of influences of three factors (soils, slopes and vegetations) affecting the soil erosion is in the order of the factor of slopes. vegetations and soils. In the same condition of treatments on the field experiment under the natural rainfall, the order of magnitude of influences of three factors (soils, slopes and mulchings) affecting the soil erosion is the factor of mulchings, of slopes and of soils.

  • PDF

Sonochemical and Sonophysical Effects in a Downward-Irradiation Sonoreactor (하향 초음파 조사 시스템에서의 초음파 화학적 및 물리적 효과 평가)

  • Kim, Seulgi;Son, Younggyu
    • Journal of Soil and Groundwater Environment
    • /
    • v.25 no.3
    • /
    • pp.23-31
    • /
    • 2020
  • The performance of a downward-irradiation sonoreactor was investigated using calorimetry, KI dosimetry, luminol (Sonochemiluminescence, SCL) method, and aluminium foil erosion method as one of the basic steps for the optimal design of downward-irradiation sonoreactors. The applied frequency was 28 kHz and the input electrical power was 280 - 300 W. The liquid height, from the reactor bottom to the transducer module surface, ranged from 1λ (53.6 mm) to 2λ (107.1 mm). For various liquid heights, the magnitude of calorimetric power and the mass of cavitation-generated I3- ion varied significantly. It was found that the additional application of mechanical mixing resulted in higher sonochemical activity, especially in the cavitational active zone, which was induced by violent liquid flow in the reactor. In aluminium foil erosion tests, it was found that less ultrasound energy reached the bottom of the reactor due to the violent liquid flow and no significant sonophysical effect was observed for higher mixing rate conditions (100 and 200 rpm).

Effects of Two Phase Flow on Erosion Characteristic in a Rocket Nozzle (2상 유동에 의한 로켓 노즐 마모 특성에 대한 고찰)

  • 김완식;유만선;조형희;배주찬
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.3 no.4
    • /
    • pp.83-92
    • /
    • 1999
  • A numerical analysis of two phase flow in the solid rocket nozzle was conducted. Stoke number was defined over the various aluminum oxide($AI_2$$O_3$) particle sizes and particle trajectories were treated by Lagrangian approach. Particle stability was considered by the definition of Weber number in a rocket nozzle. Large particles are divided after the nozzle throat as the flow accelerates rapidly. The division of particles changes the particle distribution at the nozzle exit. From the above results, it was found that the nozzle converge section surface might be affected by aluminum oxide particles. Also, Mechanical erosion rate of nozzle surface was predicted for different materials.

  • PDF

Development of Microstructure Pad and Its Performances in STI CMP (미세 표면 구조물을 갖는 패드의 제작 및 STI CMP 특성 연구)

  • Jeong, Suk-Hoon;Jung, Jae-Woo;Park, Ki-Hyun;Seo, Heon-Deok;Park, Jae-Hong;Park, Boum-Young;Joo, Suk-Bae;Choi, Jae-Young;Jeong, Hae-Do
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.3
    • /
    • pp.203-207
    • /
    • 2008
  • Chemical mechanical polishing (CMP) allows the planarization of wafers with two or more materials. There are many elements such as slurry, polishing pad, process parameters and conditioning in CMP process. Especially, polishing pad is considered as one of the most important consumables because this affects its performances such as WIWNU(within wafer non-uniformity) and MRR(material removal rate). In polishing pad, grooves and pores on its surface affect distribution of slurry, flow and profile of MRR on wafer. A subject of this investigation is to apply CMP for planarization of shallow trench isolation structure using microstructure(MS) pad. MS pad is designed to have uniform structure on its surface and manufactured by micro-molding technology. And then STI CMP performances such as pattern selectivity, erosion and comer rounding are evaluated.