• Title/Summary/Keyword: Erosion model

Search Result 589, Processing Time 0.031 seconds

SEMMA Revision to Evaluate Soil Erosion on Mountainous Watershed of Large Scale (대규모 산지유역 토양침식 평가를 위한 SEMMA 개선)

  • Shin, Seung Sook;Park, Sang Deog;Lee, Jong Seol;Lee, Kyu Song
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.9
    • /
    • pp.885-896
    • /
    • 2013
  • SEMMA (Soil Erosion Model for Mountain Areas) should be revised to apply on mountain watershed of large scale. In this study, the basic structure of original SEMMA and methods to calculate main parameters are reviewed and the revised parameters are presented to expand a range of application. SEMMA-Ic is new model revised by a rate of vegetation cover which is substituted for index of vegetation structure to use specially NDVI for large scale areas. The correlation coefficient and the Nash-Sutcliffe simulation efficiency for the revised model decreased rather than those of original model. However the evaluation of the revised model on watershed showed the approximate simulation with measured sediment yield and the underestimated simulation when sediment yield is large. The additional research for channel erosion is needed so that soil erosion model for hillslopes is used to estimate sediment yield from a watershed.

Development and demonstration of an erosion-corrosion damage simulation apparatus (배관 침부식 손상 연속모사 장비 개발 및 실증)

  • Nam, Won Chang;Ryu, Kyung Ha;Kim, Jae Hyoung
    • Corrosion Science and Technology
    • /
    • v.12 no.4
    • /
    • pp.179-184
    • /
    • 2013
  • Pipe wall thinning caused by erosion and corrosion can adversely affect the operation of aged nuclear power plants. Some injured workers owing to pipe rupture has been reported and power reduction caused by unexpected pipe damage has been occurred consistently. Therefore, it is important to develop erosion-corrosion damage prediction model and investigate its mechanisms. Especially, liquid droplet impingement erosion(LDIE) is regarded as the main issue of pipe wall thinning management. To investigate LDIE mechanism with corrosion environment, we developed erosion-corrosion damage simulation apparatus and its capability has been verified through the preliminary damage experiment of 6061-Al alloy. The apparatus design has been based on ASTM standard test method, G73-10, that use high-speed rotator and enable to simulate water hammering and droplet impingement. The preliminary test results showed mass loss of 3.2% in conditions of peripheral speed of 110m/s, droplet size of 1mm-diameter, and accumulated time of 3 hours. In this study, the apparatus design revealed feasibility of LDIE damage simulation and provided possibility of accelerated erosion-corrosion damage test by controlling water chemistry.

Image-based characterization of internal erosion around pipe in earth dam

  • Dong-Ju Kim;Samuel OIamide Aregbesola;Jong-Sub Lee;Hunhee Cho;Yong-Hoon Byun
    • Computers and Concrete
    • /
    • v.33 no.5
    • /
    • pp.481-496
    • /
    • 2024
  • Internal erosion around pipes can lead to the failure of earth dams through various mechanisms. This study investigates the displacement patterns in earth dam models under three different failure modes due to internal erosion, using digital image correlation (DIC) methods. Three failure modes—erosion along a pipe (FM1), pipe leakage leading to soil erosion (FM2), and erosion in a pipe due to defects (FM3)—are analyzed using two- and three-dimensional image- processing techniques. The internal displacement of the cross-sectional area and the surface displacement of the downstream slope in the dam models are monitored using an image acquisition system. Physical model tests reveal that FM1 exhibits significant displacement on the upper surface of the downstream slope, FM2 shows focused displacement around the pipe defect, and FM3 demonstrates increased displacement on the upstream slope. The variations in internal and surface displacements with time depend on the segmented area and failure mode. Analyzing the relationships between internal and surface displacements using Pearson correlation coefficients reveals various displacement patterns for the segmented areas and failure modes. Therefore, the image-based characterization methods presented in this study may be useful for analyzing the displacement distribution and behavior of earth dams around pipes, and further, for understanding and predicting their failure mechanisms.

IDENTIFICATION OF EROSION PRONE FOREST AREA - A REMOTE SENSING AND GIS APPROACH

  • Jayakumar, S.;Lee, Jung-Bin;Enkhbaatar, Lkhagva;Heo, Joon
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2008.10a
    • /
    • pp.251-253
    • /
    • 2008
  • Erosion and landslide cause serious damage to forest areas. As a consequence, partial or complete destruction of vegetation occurs, which leads to many cascading problems. In this study, an attempt has been made to identify the forest areas, which are under different risk categories of erosion and landslide, in part of Eastern Ghats of Tamil Nadu. Relevantthematic maps were generated from satellite data, topographical maps, primary and secondary data and weights to each map were assigned appropriately. Weighted overlay analysis was carried out to identify the erosionprone forest areas. The result of erosion and landslide prone model reveals that 4712 ha(17%) of forest area is under high risk category and 15879 ha(58.65%) isunder medium risk category. The results of spatial modeling would be very much useful to the forest officials and conservationist to plan for effective conservation.

  • PDF

Transition Mechanism from Brittle Fracture to Ductile Shear when Machining Brittle Materials with an Abrasive Waterjet

  • Huang, Chuanzhen;Zhu, Hongtao;Lu, Xinyu;Li, Quanlai;Che, Cuilian
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.2
    • /
    • pp.11-17
    • /
    • 2008
  • Critical erosion kinetic energy models for radial/median cracks and lateral cracks in a workpiece are established in this study. We used experimental results to demonstrate that the fracture erosion resistance and erosion machining number could be used to evaluate the brittle fracture resistance and machinability of a workpiece. Erosion kinetic energy models were developed to predict brittle fracture and ductile shear, and a critical erosion kinetic energy model was developed to predict the transition from brittle fracture to ductile shear. These models were verified experimentally.

Numerical Cavitation Intensity on a Hydrofoil for 3D Homogeneous Unsteady Viscous Flows

  • Leclercq, Christophe;Archer, Antoine;Fortes-Patella, Regiane;Cerru, Fabien
    • International Journal of Fluid Machinery and Systems
    • /
    • v.10 no.3
    • /
    • pp.254-263
    • /
    • 2017
  • The cavitation erosion remains an industrial issue for many applications. This paper deals with the cavitation intensity, which can be described as the fluid mechanical loading leading to cavitation damage. The estimation of this quantity is a challenging problem both in terms of modeling the cavitating flow and predicting the erosion due to cavitation. For this purpose, a numerical methodology was proposed to estimate cavitation intensity from 3D unsteady cavitating flow simulations. CFD calculations were carried out using Code_Saturne, which enables U-RANS equations resolution for a homogeneous fluid mixture using the Merkle's model, coupled to a $k-{\varepsilon}$ turbulence model with the Reboud's correction. A post-process cavitation intensity prediction model was developed based on pressure and void fraction derivatives. This model is applied on a flow around a hydrofoil using different physical (inlet velocities) and numerical (meshes and time steps) parameters. The article presents the cavitation intensity model as well as the comparison of this model with experimental results. The numerical predictions of cavitation damage are in good agreement with experimental results obtained by pitting test.

Erosion Profile Modeling of Micro Abrasive Jet Machining (미세입자 분사 가공의 마모 형상 모델링)

  • Park Y.W.;Lee J.M.;Ko T.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.649-652
    • /
    • 2005
  • Abrasive jet machining is a well-known process for patterning window glass and mirrors. The technics is now being developed for the production structure with high precision. This paper describes erosion profile modeling of micro abrasive jet machining and compares with other researcher's model.

  • PDF

A Study on the Topography Change of Hyeya River and Jinha Beach (회야강 하구 및 진하해수욕장의 지형변화에 관한 연구)

  • 민병형;민일규;이동수
    • Journal of Ocean Engineering and Technology
    • /
    • v.8 no.1
    • /
    • pp.84-95
    • /
    • 1994
  • In recent years Jin-Beach and Hyeya River mouth have experienced severe erosion phenomena. The cause of erosion is examined using a 3-dimensional nunumerical sediment transport model. The model is composed of three components : wave model, wave-induced current model and 3-dimensional sediment transport model. In the wave analysis component we consider refraction, diffraction and reflection based on Maruyama and Kajima method. For the wave-induced current model we use depth-integrated continuty equation and momentum equations. For the 3-dimensional sediment transport model we consider bed load and suspended load simutaneously. Model results obtained for Jin-ha Beach and Hyeya River mouth agreed well with experimental results.

  • PDF

Assessment of the Effect of Geographic Factors and Rainfall on Erosion and Deposition (지형학적 인자 및 강우량에 따른 침식 및 퇴적의 영향 평가)

  • Yu, Wan-Sik;Lee, Gi-Ha;Jung, Kwan-Sue
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.11 no.2
    • /
    • pp.103-112
    • /
    • 2011
  • This study aims to demonstrate the relationship between various factors and soil erosion or deposition, simulated from distributed rainfall-sediment-runoff model applications. We selected area, overland flow length, local slope as catchment representative characteristics among many important geographic factors and also used the grid-based accumulated rainfall as a representative hydro-climatic factor to assess the effect of these two different types of factors on erosion and deposition. The study catchment was divided based on the Strahler's stream order method for analysis of the relationship between area and erosion or deposition. Both erosion and deposition increased linearly as the catchment area became larger. Erosion occurred widely throughout the catchment, whereas deposition was observed at the grid-cells near the channel network with short overland flow lengths and mild slopes. In addition, the relationship results between grid-based accumulated rainfall and soil erosion or deposition showed that erosion increased gradually as rainfall amount increased, whereas deposition responded irregularly to variations in rainfall. Within the context of these results, it can be concluded that deposition is closely related with the geographic factors used in this study while erosion is significantly affected by rainfall.

An evaluation of a crushed stone filter and gabion retaining wall for reducing internal erosion of agricultural reservoirs

  • Lee, Young-Hak;Lee, Dal-Won;Ryu, Jung-Hyun;Kim, Cheol-Han;Heo, Joon;Shim, Jae-Woong
    • Korean Journal of Agricultural Science
    • /
    • v.47 no.3
    • /
    • pp.485-496
    • /
    • 2020
  • Recent changes in the disaster environment have greatly increased the possibility of internal erosion in deteriorated reservoirs; thus, countermeasure methods are required to enhance the drainage performance of embankments. Sand filters have been mainly used to prevent internal erosion; however, due to the sand depletion and environmental problems, new alternative materials are required to replace the sand in the filter zone. In this study, crushed stone was used instead of sand as a material that could satisfy permeability, material supply, demanding conditions, and economic efficiency. Although crushed stone has excellent drainage performance, it has a clogging phenomenon due to its high permeability. Accordingly, the materials need to be separated with a geotextile wrapping method. Additionally, the 3D numerical analysis and a large model experiment were conducted to evaluate the seepage characteristics and in-site application of the crushed stone filter. As a result, the crushed stone filter showed an excellent dispersion effect by reducing the pore water pressure by about 9.5 times that of the sand filter. In addition, it was shown that the safety factor for piping increased significantly by reducing internal erosion. When comparing the economics and supply and demand conditions of the material, crushed stone was evaluated as an effective method to reduce the internal erosion of embankments at deteriorated reservoirs.