• 제목/요약/키워드: Erosion Prediction

검색결과 155건 처리시간 0.027초

포열 마모예측용 소프트웨어 개발 및 적용 (The Development and Application Wear of Prediction Tool for Gun Barrel)

  • 김건인;정동윤;박송구;이규섭
    • 한국군사과학기술학회지
    • /
    • 제7권2호
    • /
    • pp.5-12
    • /
    • 2004
  • The erosion wear of gun barrel occurs due to heat and chemical reactions. The high pressure and temperature in chamber increase the erosion wear. It is known that the metal phase transfer is the primary wear factor in a gun barrel under high temperature. In this paper, the tool of wear prediction in high pressure gun tube has been developed. The program developed has three modules such as DIRECT(interior ballistics analysis module), INVERSE(gun design module), and WEAR(wear prediction module). The prediction of wear was compared with the experimental data which was collected in the field unit. The prediction results shows good trend with the collected data.

펌프 캐비테이션 침식 예측진단 (Prognostic Technique for Pump Cavitation Erosion)

  • 이도환;강신철
    • 대한기계학회논문집A
    • /
    • 제37권8호
    • /
    • pp.1021-1027
    • /
    • 2013
  • 원심펌프의 캐비테이션 침식에 대한 예측진단 기법을 본 연구에서 제시했다. 펌프의 침식 상태를 추정하기 위해 캐비테이션 소음을 측정하여 손상률을 계산하고 누적 손상은 특정 운전 상태에 따라 추정한 손상과 Miner의 법칙을 이용하여 계산했다. 펌프 임펠러의 잔존 유효 수명은 미래의 운전 조건을 가정한 누적 손상 예측치에 따라 계산하고 예측 불확도는 몬테카를로 모의를 통해 얻었다. 예측 및 시험 결과를 비교해 본 결과 개발된 방법이 캐비테이션 침식 상태와 잔존 유효 수명을 예측하는 데 적용될 수 있음을 확인할 수 있다.

Development of a Water Droplet Erosion Model for Large Steam Turbine Blades

  • Lee, Byeong-Eun;Riu, Kap-Jong;Shin, Se-Hyun;Kwon, Soon-Bum
    • Journal of Mechanical Science and Technology
    • /
    • 제17권1호
    • /
    • pp.114-121
    • /
    • 2003
  • Water droplet erosion is one of major concerns in the design of modern large fossil steam turbines because it causes serious operational problems such as performance degradation and reduction of service life. A new erosion model has been developed in the present study for the prediction of water droplet erosion of rotor blades operated in wet steam conditions. The major four erosion parameter : impact velocity, impacting droplet flow rate, droplet size and hardness of target are involved in the model so that it can also be used for engineering purpose at the design stage of rotor blades. Comparison of the predicted erosion rate with the measured data obtained from the practical steam turbine operated for more than 90,000 hours shows good agreement.

농업 소류역으로부터의 토양침식 및 유사량 시산을 위한 전산모의 모델 (I) (Digital simulation model for soil erosion and Sediment Yield from Small Agricultural Watersheds(I))

  • 권순국
    • 한국농공학회지
    • /
    • 제22권4호
    • /
    • pp.108-114
    • /
    • 1980
  • A deterministic conceptual erosion model which simulates detachment, entrainment, transport and deposition of eroded soil particles by rainfall impact and flowing water is presented. Both upland and channel phases of sediment yield are incorporated into the erosion model. The algorithms for the soil erosion and sedimentation processes including land and crop management effects are taken from the literature and then solved using a digital computer. The erosion model is used in conjunction with the modified Kentucky Watershed Model which simulates the hydrologic characteristics from watershed data. The two models are linked together by using the appropriate computer code. Calibrations for both the watershed and erosion model parameters are made by comparing the simulated results with actual field measurements in the Four Mile Creek watershed near Traer, Iowa using 1976 and 1977 water year data. Two water years, 1970 and 1978 are used as test years for model verification. There is good agreement between the mean daily simulated and recorded streamflow and between the simulated and recorded suspended sediment load except few partial differences. The following conclusions were drawn from the results after testing the watershed and erosion model. 1. The watershed and erosion model is a deterministic lumped parameter model, and is capable of simulating the daily mean streamflow and suspended sediment load within a 20 percent error, when the correct watershed and erosion parameters are supplied. 2. It is found that soil erosion is sensitive to errors in simulation of occurrence and intensity of precipitation and of overland flow. Therefore, representative precipitation data and a watershed model which provides an accurate simulation of soil moisture and resulting overland flow are essential for the accurate simulation of soil erosion and subsequent sediment transport prediction. 3. Erroneous prediction of snowmelt in terms of time and magnitute in conjunction with The frozen ground could be the reason for the poor simulation of streamflow as well as sediment yield in the snowmelt period. More elaborate and accurate snowmelt submodels will greatly improve accuracy. 4. Poor simulation results can be attributed to deficiencies in erosion model and to errors in the observed data such as the recorded daily streamflow and the sediment concentration. 5. Crop management and tillage operations are two major factors that have a great effect on soil erosion simulation. The erosion model attempts to evaluate the impact of crop management and tillage effects on sediment production. These effects on sediment yield appear to be somewhat equivalent to the effect of overland flow. 6. Application and testing of the watershed and erosion model on watersheds in a variety of regions with different soils and meteorological characteristics may be recommended to verify its general applicability and to detact the deficiencies of the model. Futhermore, by further modification and expansion with additional data, the watershed and erosion model developed through this study can be used as a planning tool for watershed management and for solving agricultural non-point pollution problems.

  • PDF

Effects of Oxidation and Hot Corrosion on the Erosion of Silicon Nitride

  • Kim, Jong Jip
    • Corrosion Science and Technology
    • /
    • 제4권4호
    • /
    • pp.136-139
    • /
    • 2005
  • The effect of oxidation and hot corrosion on the solid particle erosion was investigated for hot-pressed silicon nitride using as-polished, pre-oxidized and pre-corroded specimens by molten sodium sulfates. Erosion tests were performed at 22, 500 and $900^{\circ}C$ using angular silicon carbide particles of mean diameter $100{\mu}m$. Experimental results show that solid particle erosion rate of silicon nitride increases with increasing temperature for as-polished or pre-oxidized specimens in consistent with the prediction of a theoretical model. Erosion rate of pre-oxidized specimens is lower than that of as-polished specimens at $22^{\circ}C$, but it is higher at $900^{\circ}C$. Lower erosion rate at $22^{\circ}C$ in the pre-oxidized specimens is attributed due to the blunting of surface flaws, and the higher erosion rate at $900^{\circ}C$ is due to brittle lateral cracking. Erosion rate of pre-corroded specimens decreases with increasing temperature. Less erosion at $900^{\circ}C$ than at $22^{\circ}C$ is associated with the liquid corrosion products sealing off pores at $900^{\circ}C$ and the absence of inter-granular crack propagation observed at $22^{\circ}C$.

유압시스템의 입자 침해 침식의 실험적 고찰 (An Experimental Investigation of Particle Impingement Erosion in Hydraulic Systems)

  • 이재천;김성훈
    • 한국자동차공학회논문집
    • /
    • 제10권2호
    • /
    • pp.117-122
    • /
    • 2002
  • This study assesses the wear process of particle impingement erosion which is a major source of erosion among fluid power components. First, Bitter's theory was modified to simplify engineering calculations. Second, actual experiments were conducted to validate the modified equation. And the effect of concentration and size distribution of impinging particles was tested. Little deviation from the prediction of the modified equation was observed. To develop complete analytical approach to the erosion mechanism, further experimental data are required to establish a correlation with other engineering parameters.

유압시스템의 입자 침해 침식의 실험적 고찰 (An Experimental Investigation of Particle Impingement Erosion in Hydraulic System)

  • 이재천
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2001년도 제33회 춘계학술대회 개최
    • /
    • pp.15-21
    • /
    • 2001
  • This study assesses the wear process of particle impingement erosion which is a major source of erosion among fluid power components. First, Bitter's theory was modified to simplify engineering calculations. Second, actual experiments were conducted to validate the modified equation. And the effect of concentration and size distribution of impinging particles was tested. Little deviation from the prediction of the modified equation was observed. To develop an analytical approach to the erosion mechanism, further experimental data are required to establish a correlation with other engineering parameters.

  • PDF

WEPP 모형을 이용한 경사지 토양유실량 추정 (Estimating of Soil Loss from Hillslope Using WEPP Model)

  • 손정호;박승우;강민구
    • 한국농공학회:학술대회논문집
    • /
    • 한국농공학회 2001년도 학술발표회 발표논문집
    • /
    • pp.45-50
    • /
    • 2001
  • The purpose of this study was to estimate of soil loss form hillslope using WEPP(Water Erosion Prediction Project) model. WEPP model was developed for predicting soil erosion and deposition, fundamentally based on soil erosion prediction technology. The model for predicting sediment yields from single storms was applied to a tested watershed. Surface runoff is calculated by kinematic wave equation and infiltration is based on the Green and Ampt equation. Governing equations for sediment continuity, detachment, deposition, shear stress in rills, and transport capacity are presented. Tested watershed has an area of 0.6ha, where the runoff and sediment data were collected. The relative error between predicted and measured runoff was $-16.6{\sim}2.2%$, peak runoff was $-15.6{\sim}2.2%$ and soil loss was $-23.9{\sim}356.5%$.

  • PDF

합성곱 신경망을 이용한 프로펠러 캐비테이션 침식 위험도 연구 (A Study on the Risk of Propeller Cavitation Erosion Using Convolutional Neural Network)

  • 김지혜;이형석;허재욱
    • 대한조선학회논문집
    • /
    • 제58권3호
    • /
    • pp.129-136
    • /
    • 2021
  • Cavitation erosion is one of the major factors causing damage by lowering the structural strength of the marine propeller and the risk of it has been qualitatively evaluated by each institution with their own criteria based on the experiences. In this study, in order to quantitatively evaluate the risk of cavitation erosion on the propeller, we implement a deep learning algorithm based on a convolutional neural network. We train and verify it using the model tests results, including cavitation characteristics of various ship types. Here, we adopt the validated well-known networks such as VGG, GoogLeNet, and ResNet, and the results are compared with the expert's qualitative prediction results to confirm the feasibility of the prediction algorithm using a convolutional neural network.

Integration of GIS-based RUSLE model and SPOT 5 Image to analyze the main source region of soil erosion

  • LEE Geun-Sang;PARK Jin-Hyeog;HWANG Eui-Ho;CHAE Hyo-Sok
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2005년도 Proceedings of ISRS 2005
    • /
    • pp.357-360
    • /
    • 2005
  • Soil loss is widely recognized as a threat to farm livelihoods and ecosystem integrity worldwide. Soil loss prediction models can help address long-range land management planning under natural and agricultural conditions. Even though it is hard to find a model that considers all forms of erosion, some models were developed specifically to aid conservation planners in identifying areas where introducing soil conservation measures will have the most impact on reducing soil loss. Revised Universal Soil Loss Equation (RUSLE) computes the average annual erosion expected on hillslopes by multiplying several factors together: rainfall erosivity (R), soil erodibility (K), slope length and steepness (LS), cover management (C), and support practice (P). The value of these factors is determined from field and laboratory experiments. This study calculated soil erosion using GIS-based RUSLE model in Imha basin and examined soil erosion source area using SPOT 5 high-resolution satellite image and land cover map. As a result of analysis, dry field showed high-density soil erosion area and we could easily investigate source area using satellite image. Also we could examine the suitability of soil erosion area applying field survey method in common areas (dry field & orchard area) that are difficult to confirm soil erosion source area using satellite image.

  • PDF