• Title/Summary/Keyword: Erosion

Search Result 3,026, Processing Time 0.034 seconds

A Study on Shoreline Change in Hampyung Bay, Southwestern Coast of korea I. Sea-Cliff Erosion and Retreat (한국 서해 남부 함평만의 해안선 변화 연구 I. 해안절벽의 침식과 후퇴)

  • ;;;;;S-Y YANG
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.7 no.3
    • /
    • pp.148-156
    • /
    • 2002
  • The coastline of Hampyung Bay, southwestern coast of Korea, was examined and measured in the field for the understanding of geomorphic changes and sea-cliff erosion processes. The Hampyung-Bay coastline is characterized by steep-face slope and soft soil and/or intensively weathered rock composition. Saw teeth-shaped coastline, and relict weathered basement-rock and "Island Stack" exposed on the beach surface are peculiar geomorphic features indicating active sea-cliff erosion. The coastline in the study area is continuously retreating with the following cyclic process: erosion of cliff base, gravitational landslide or mass wasting, formation of talus, and then erosion and removal of talus. In this study, sea-level rise during summer in the west coast of Korea is suggested as one of the key factors fur the removal of soil taluses and, thereby, accelerating sea-cliff erosion.f erosion.

Rainfall Intensity Regulating Surface Erosion and Its Contribution to Sediment Yield on the Hillslope Devastated by a Shallow Landslide (산사태 붕괴사면에 있어서 표면침식에 영향을 미치는 강우강도와 그에 따른 유출토사량의 변화)

  • Kwon, Se Myoung;Seo, Jung Il;Cho, Ho Hyoung;Kim, Suk Woo;Lee, Dong Kyun;Ji, Byoung Yun;Chun, Kun-Woo
    • Journal of Forest and Environmental Science
    • /
    • v.29 no.4
    • /
    • pp.314-323
    • /
    • 2013
  • To examine surface erosion and sediment export patterns on a hillslope, which was devastated by a shallow landslide and which was slowly revegetating by natural plant species, we surveyed variations in surface erosion depth on the upper-, middle- and lower-section of the hillslope, and subsequent sediment yield from the whole hillslope. The result showed that, with the passing of year, surface erosion on the devastated hillslope was regulated by higher rainfall intensity due to the supply-limitation of exportable sediment, and its variation range decreased. In addition, surface erosion on the upper-section with steep slope was regulated by higher rainfall intensity, which might result in raindrop erosion, compared to it on the lower-section with relatively gentle slope. Besides, the sediment yield from the devastated hillslope had nonlinear relationship with surface erosion depth on the hillslope because sediments on the hillslope are exported downwards while repeating their cycle of transport and redistribution. Our findings suggest the establishment of management strategy to prevent sediment-related disasters occurred during torrential rainfall events, which was based on the continuous field investigation on the hillslope devastated by landslides.

Study on Erosion of Carbon Fiber Reinforced Plastic Composite (탄소섬유강화복합재료의 마식에 관한 연구)

  • Kim, Am-Kee;Kim, Il-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.2
    • /
    • pp.291-297
    • /
    • 2008
  • The solid particle erosion behaviour of unidirectional carbon fiber reinforced plastic (CFRP) composites was investigated. The erosive wear of these composites was evaluated at different impingement angles ($30^{\circ}$, $45^{\circ}$, $60^{\circ}$, $90^{\circ}$), different impact velocities (40, 55, 60, 70m/s) and at three different fiber orientations ($0^{\circ}$, $45^{\circ}$, $90^{\circ}$). The erodent was SiC sand with the size $50-100{\mu}m$ of irregula. shapes. The result showed ductile erosion behaviour with maximum erosion rate at $30^{\circ}$ impingement angle. The fiber orientations had a significant influence on erosion. The erosion rate was strongly dependent on impact velocity which followed power law $E{\propto}\;V^n$. Based on impact velocity (V), impact angle (${\alpha}$) and fiber orientation angle (${\beta}$), a method was proposed to predict the erosion rate of unidirectional fiber reinforced composites.

Integration of GIS with USLE in Assessment of Soil Erosion due to Typoon Rusa (태풍 루사에 의한 토양 침식량 산정을 위한 GIS와 범용토양손실공식(USLE) 연계)

  • Hahm, Chang-Hahk;Kim, Byung-Sik
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.15 no.3
    • /
    • pp.77-85
    • /
    • 2007
  • Assessment of soil erosion is a cost and time-consuming task. There are many models developed to predict soil erosion from an area, but Universal Soil Loss Equation (USLE) is most widely used empirical equation for estimating annual soil erosion. Soil erosion depends upon-rainfall intensity, type of soil, land cover and land use, slope degree, slope length and soil conservation practice. All these parameters are have spatial distribution and hence satellite remote sensing and Geographic Information System (GIS) are applicable in the assessment of the influence on soil erosion. GIS has been integrated with the USLE (Universal Soil Loss Equation) model in identification of rainfall-based erosion to the Bocheong River which is the representative basin of IHP due to Typhoon Rusa. Similar studies are available in literature, ranging from those that use a simple model such as USLE to others of a more sophisticated nature.

  • PDF

PREVALENCE AND ASSOCIATED RISK FACTORS OF DENTAL EROSION IN 9- AND 10-YEAR-OLD CHILDREN IN BUSAN (부산시에 거주하는 9~10세 어린이의 치아침식증 유병률과 관련된 위험요소)

  • Yu, Seong Goo;Lee, Chang Han;Jeong, Tae-Sung;Kim, Shin
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.40 no.1
    • /
    • pp.11-20
    • /
    • 2013
  • The prevalence and interest of dental erosion seems to be rising in children all over the world. Thus, This study was performed to investigate the prevalence and severity of dental erosion in the primary molars at terminal stage nearing exfoliation, and associated risk factors. An examination was performed on 788 children using modified Linkosalo & Markkanen system, and questionnaires were gained. Association between dental erosion and the risk factors were statistically analyzed with chi-squared test and logistic regression analysis at a significance level of p < 0.05. As a result, 213 children (27%) showed dental erosion, and the mandibular left first primary molar was the most influenced tooth. According to the analysis of risk factors, frequent intake of carbonated drinks and fruit juices showed significant development of erosion (p < 0.05), and using straw for drinking fruit juices showed significant a reduction of erosion (p < 0.05).

A Study on Erosion Structure Properties for Thermal Insulation Materials on Carbon-Carbon Composites and Graphite Nozzle Throat (C-C 복합재료와 Graphite 노즐목 내열재의 침식조직 특성에 대한 연구)

  • Kim, Young In;Lee, Soo Yong
    • Journal of Aerospace System Engineering
    • /
    • v.11 no.5
    • /
    • pp.42-49
    • /
    • 2017
  • The solid rocket motor(SRM) consists of a motor case, igniter, propellants, nozzle, insulation, controller, and driving device. The liquid rocket propulsion systems(LRPSs) cools the nozzle by the fuel and oxidizer but SRM does not cool the nozzle. The nozzle of SRM is high temperature condition and high velocity condition so occurs the erosion by combustion gas. This erosion occurs the change of nozzle throat and reduces thrust performance of rocket. The material of Rocket nozzle is minimization of erosion and insulation effect and endure the shear force, high temperature and high pressure. The purpose of this study is to investigate the erosion characteristics of solid rocket nozzles by each combustion time. Through the structure inspection of Graphite and C-C composite, identify the characteristics of the microstructure before and after erosion.

Deposition and Erosion Relief of Riverfront by Vegetation (식생에 의한 하안 퇴적과 침식 경감)

  • Kim, Jin-Hong
    • Ecology and Resilient Infrastructure
    • /
    • v.2 no.2
    • /
    • pp.154-160
    • /
    • 2015
  • This paper presents the field investigation of deposition and erosion relief of a riverfront using vegetation. The results obtained were as follows: Phragmites japonica showed 0.2 m of deposition and 0.3 m-0.4 m of erosion relief of river front by the critical velocity of 1.0 m/s-1.2 m/s. P. communis showed 0.1 m-0.4 m of deposition and 0.2 m-0.3 m of erosion relief by the critical velocity of 0.6 m/s-0.7 m/s. Salix gracilistyla showed 0.1 m-0.2 m of deposition and 0.4 m-0.5 m of erosion relief by the critical velocity of 1.2 m/s-1.4 m/s. Miscanthus sacchariflorus showed 0.1 m-0.4 m of deposition and 0.1 m-0.2 m of erosion relief by the critical velocity of 0.6 m/s-0.7 m/s. S. gracilistyla had the greatest role, while M. sacchariflorus had the lowest role for erosion relief. These results showed that aquatic plants had an effective role in sustaining a stable channel.

Development of Automatic Extraction Model of Soil Erosion Management Area using ArcGIS Model Builder (ArcGIS Model Builder를 이용한 토양유실 우선관리 지역 선정 자동화 모형 개발)

  • Kum, Dong-Hyuk;Choi, Jae-Wan;Kim, Ik-Jae;Kong, Dong-Soo;Ryu, Ji-Chul;Kang, Hyun-Woo;Lim, Kyoung-Jae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.53 no.1
    • /
    • pp.71-81
    • /
    • 2011
  • Due to increased human activities and intensive rainfall events in a watershed, soil erosion and sediment transport have been hot issues in many areas of the world. To evaluate soil erosion problems spatially and temporarily, many computer models have been developed and evaluated over the years. However, it would not be reasonable to apply the model to a watershed if topography and environment are different to some degrees. Also, source codes of these models are not always public for modification. The ArcGIS model builder provides ease-of-use interface to develop model by linking several processes and input/output data together. In addition, it would be much easier to modify/enhance the model developed by others. Thus, simple model was developed to decide soil erosion hot spot areas using ArcGIS model builder tool in this study. This tool was applied to a watershed to evaluate model performance. It was found that sediment yield was estimated to be 13.7 ton/ha/yr at the most severe soil erosion hot spot area in the study watershed. As shown in this study, the ArcGIS model builder is an efficient tool to develop simple models without professional programming abilities. The model, developed in this study, is available at http://www.EnvSys.co.kr/~sateec/toolbox for free download. This tool can be easily modified for further enhancement with simple operations within ArcGIS model builder interface. Although very simple soil erosion and sediment yield were developed using model builder and applied to study watershed for soil erosion hot spot area in this study. The approaches shown in this study provides insights for model development and code sharing for the researchers in the related areas.

Evaluation of Effects of Soil Erosion Estimation Accuracy on Sediment Yield with SATEEC L Module (SATEEC L모듈을 이용하여 토양유실량 산정 정확성이 유사량 예측에 미치는 영향 평가)

  • Woo, Won-Hee;Jang, Won-Seok;Kim, Ik-Jae;Kim, Ki-Sung;Ok, Yong-Sik;Kim, Nam-Won;Jeon, Ji-Hong;Lim, Kyoung-Jae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.53 no.2
    • /
    • pp.19-26
    • /
    • 2011
  • SATEEC ArcView GIS system was developed using the Universal Soil Loss Equation (USLE) and sediment delivery ratio (SDR) modules. In addition, time-variant R and C modules and $R_5$ module were developed and integrated into the SATEEC system in recent years. The SATEEC ArcView GIS 2.1 system is a simple-to-use system which can estimate soil erosion and sediment yield spatially and temporarily using only USLE input data, DEM, and daily rainfall dataset. In this study, the SATEEC 2.1 system was used to evaluate the effects of USLE LS input data considering slope length segmentation on soil erosion and sediment yield estimation. Use of USLE LS with slope length segmentation due to roads in the watershed, soil erosion estimation decreased by 24.70 %. However, the estimated sediment yield using SATEEC GA-SDR matched measured sediment values in both scenarios (EI values of 0.650 and EI 0.651 w/o and w/flow segmentation). This is because the SATEEC GA-SDR module estimates lower SDR in case of greater soil erosion estimation (without flow length segmentation) and greater SDR in case of lower soil erosion estimation (with flow length segmentation). This indicates that the SATEEC soil erosion need to be estimated with care for accurate estimation of SDR at a watershed scale and for accurate evaluation of BMPs in the watershed.

Effect of Mn-Addition on the Sliding Wear Resistance and the Cavitation Erosion Resistance of Fe-base Hardfacing Alloy (Mn 첨가가 경면처리용 Fe계 신합금의 캐비테이션 에로젼과 슬라이딩 마모저항성에 미치는 영향)

  • Kim, Yoon-Kap;Oh, Young-Min;Kim, Seon-Jin
    • Korean Journal of Materials Research
    • /
    • v.12 no.7
    • /
    • pp.550-554
    • /
    • 2002
  • The effect of Mn on cavitation erosion resistance and the sliding wear resistance of Fe-base hardfacing NewAlloy was investigated. Mn is known to decrease stacking fault energy and enhance the formation of $\varepsilon$-martensite. Cavitation erosion resistance for 50 hours and sliding wear resistance for 100 cycles were evaluated by weight loss. Fe-base hardfacing NewAlloy showed more excellent cavitation erosion resistance than Mn-added NewAlloys. $\Upsilon-\alpha$' phase transformation that can enhance erosion resistance by matrix hardening occurred in every specimens. But, only in Mn free Fe-base hardfacing NewAlloy, the hardened matrix could repress the propagation of cracks that was initialed at the matrix-carbides interfaces more effectively than Mn-added NewAlloy The Mn free Fe-base hardfacing NewAlloy showed better sliding wear resistance than Mn-added alloys. Mn-addition up to 5wt.% couldn't increase the sliding wear and cavitation erosion resistance of Fe-base hardfacing alloy because it didn't make $\Upsilon\to\varepsilon$ martensite phase transformation. Therefore, it is considered that the cavitation erosion and the sliding wear resistance can be improved due to $\Upsilon\to\varepsilon$ martensite phase transformation when Mn is added more than 5wt.% in Fe-base hardfacing alloys.