• Title/Summary/Keyword: Erlang Parameter

Search Result 15, Processing Time 0.02 seconds

A Comparative Study on Reliability Attributes for Software Reliability Model Dependent on Lindley and Erlang Life Distribution (랜들리 및 어랑 수명분포에 의존한 소프트웨어 신뢰성 모형에 대한 신뢰도 속성 비교 연구)

  • Yang, Tae-Jin
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.10 no.5
    • /
    • pp.469-475
    • /
    • 2017
  • Software reliability is one of the most basic and essential problems in software development. In order to detect the software failure phenomenon, the intensity function, which is the instantaneous failure rate in the non-homogeneous Poisson process, can have the property that it is constant, non-increasing or non-decreasing independently at the failure time. In this study, was compared the reliability performance of the software reliability model using the Landely lifetime distribution with the intensity function decreasing pattern and Erlang lifetime distribution from increasing to decreasing pattern in the software product testing process. In order to identify the software failure phenomenon, the parametric estimation was applied to the maximum likelihood estimation method. Therefore, in this paper, was compared and evaluated software reliability using software failure interval time data. As a result, the reliability of the Landely model is higher than that of the Erlang distribution model. But, in the Erlang distribution model, the higher the shape parameter, the higher the reliability. Through this study, the software design department will be able to help the software design by applying various life distribution and shape parameters, and providing software reliability attributes data and basic knowledge to software reliability model using software failure analysis.

Cost Analysis for Periodic Maintenance Policy with Minimal Repair (응급수리를 고려한 정기보전정책의 비용분석)

  • 김재중;김원중
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.18 no.34
    • /
    • pp.139-146
    • /
    • 1995
  • This study is concerned with cost analysis in periodic maintenance policy. Generally periodic maintenance policy in which item is repaired periodic interval times. And in the article minimal repair is considered. Minimal repair means that if a unit fails, unit is instantaneously restored to same hazard rate curve as before failure. In the paper periodic maintenance policy with minimal repair is as follows; Operating unit is periodically replaced in periodic maintenance time, if a failure occurs between minimal repair and periodic maintenance time, unit is replaced by a spate until the periodic time comes. Also unit undergoes minimal repair at failures in minimal-repair-for-failure interval. Then total expected cost per unit time is calculated according to maintenance period and scale parameter of failure distribution. Total cost factors ate included operating, fixed, minimal repair, periodic maintenance and replacement cost Numerical example is shown in which failure time of system has erlang distribution.

  • PDF

Cost Analysis Model with Minimal Repair of Spare Unit Repair Policy under Periodic Maintenance Policy (정기보전 제도에서 응급수리를 고려한 대체품 수리정책에서의 비용분석 모델)

  • Kim Jae-Joong
    • Journal of Applied Reliability
    • /
    • v.6 no.2
    • /
    • pp.151-161
    • /
    • 2006
  • This article is concerned with cost analysis model in periodic maintenance policy. The repair policy is differently applied according as unit importance during an item being used and unit restoration during an item being failed. So in this paper the repair policy with minimal repair is considered as follow : as the occurrence of failure between minimal repair and periodic interval time, unit is replaced by a spare unit until the periodic maintenance time arrived. Then total expected cost per unit time is calculated according to scale parameter of failure distribution in a view of customer's. The total expected costs are included repair and usage cost : operating, fixed, minimal repair, periodic maintenance and spare unit cost. Numerical example is shown in which failure time of item has Erlang distribution.

  • PDF

Model Development Determining Probabilistic Ramp Merge Capacity Including Forced Merge Type (강제합류 형태를 포함한 확률적 연결로 합류용량 산정 모형 개발)

  • KIM, Sang Gu
    • Journal of Korean Society of Transportation
    • /
    • v.21 no.3
    • /
    • pp.107-120
    • /
    • 2003
  • Over the decades, a lot of studies have dealt with the traffic characteristics and phenomena at a merging area. However, relatively few analytical techniques have been developed to evaluate the traffic flow at the area and, especially, the ramp merging capacity has rarely been. This study focused on the merging behaviors that were characterized by the relationship between the shoulder lane flow and the on-ramp flow, and modeled these behaviors to determine ramp merge capacity by using gap acceptance theory. In the process of building the model, both an ideal mergence and a forced mergence were considered when ramp-merging vehicles entered the gap provided by the flow of the shoulder lane. In addition, the model for the critical gap was proposed because the critical gap was the most influential factor to determine merging capacity in the developed models. The developed models showed that the merging capacity value was on the increase as the critical gap decreased and the shoulder lane volume increased. This study has a meaning of modeling the merging behaviors including the forced merging type to determine ramp merging capacity more precisely. The findings of this study would help analyze traffic phenomena and understand traffic behaviors at a merging area, and might be applicable to decide the primary parameters of on-ramp control by considering the effects of ramp merging flow.

An Approach for the Estimation of Mixture Distribution Parameters Using EM Algorithm (복합확률분포의 파라메타 추정을 위한 EM 알고리즘의 적용 연구)

  • Daeyoung Shim;SangGu Kim
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.4
    • /
    • pp.35-47
    • /
    • 2023
  • Various single probability distributions have been used to represent time headway distributions. However, it has often been difficult to explain the time headway distribution as a single probability distribution on site. This study used the EM algorithm, which is one of the maximum likelihood estimations, for the parameters of combined mixture distributions with a certain relationship between two normal distributions for the time headway of vehicles. The time headway distribution of vehicle arrival is difficult to represent well with previously known single probability distributions. But as a result of this analysis, it can be represented by estimating the parameters of the mixture probability distribution using the EM algorithm. The result of a goodness-of-fit test was statistically significant at a significance level of 1%, which proves the reliability of parameter estimation of the mixture probability distribution using the EM algorithm.