• Title/Summary/Keyword: Erbium oxide

Search Result 13, Processing Time 0.016 seconds

Schottky Barrier MOSFETs with High Current Drivability for Nano-regime Applications

  • Jang, Moon-Gyu;Kim, Yark-Yeon;Jun, Myung-Sim;Choi, Chel-Jong;Kim, Tae-Youb;Park, Byoung-Chul;Lee, Seong-Jae
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.6 no.1
    • /
    • pp.10-15
    • /
    • 2006
  • Various sizes of erbium/platinum silicided n/p-type Schottky barrier metal-oxide-semiconductor field effect transistors (SB-MOSFETs) are manufactured from $20{\mu}m$ to 10nm. The manufactured SB-MOSFETs show excellent DIBL and subthreshold swing characteristics due to the existence of Schottky barrier between source and channel. It is found that the minimization of trap density between silicide and silicon interface and the reduction of the underlap resistance are the key factors for the improvement of short channel characteristics. The manufactured 10 nm n-type SBMOSFET showed $550{\mu}A/um$ saturation current at $V_{GS}-V_T$ = $V_{DS}$ = 2V condition ($T_{ox}$ = 5nm) with excellent short channel characteristics, which is the highest current level compared with reported data.

Varistor Characteristics of $ZnO-Pr_6/O_{11}-CoO-Er_2O_3$-Based Ceramics ($ZnO-Pr_6/O_{11}-CoO-Er_2O_3$계 세라믹스의 바리스터 특성)

  • 윤한수;박춘현;남춘우
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.308-311
    • /
    • 1999
  • The varistor characteristics of $ZnO-Pr_6O_11-CoO-Er_2O_3$-based ceramics were investigated. $ZnO-Pr_6O_11-CoO-Er_2O_3$-based ceramics were sintered at $1300^{\circ}C$ and $1350^{\circ}C$in the addition range 0.0~2.0mol% $Er_2O_3$, respectively. $ZnO-Pr_6O_11-CoO-Er_2O_3$-based ceramics, which are added with 0.5mol% $Er_2O_3$ at $1300^{\circ}C$ and l.Omol% $Er_2O_3$ at $1350^{\circ}C$ sintering temperature, exhibited the bestexcellent varistor characteristics, namely, the nonlinear exponent was better 52.78 at $1300^{\circ}C$ thanat 13$1350^{\circ}C$ and the leakage current was better 6.57$\mu\textrm$A at $1350^{\circ}C$ than at $1300^{\circ}C$. Consequently, it is estimated that $ZnO-Pr_6O_11-CoO-Er_2O_3$-based ceramics, which $Er_2O_3$ is added in the range 0.5~l.Omol% will begin to be used as a predominant basic composition of $PR_6O_11$-based ZnO varistors.

  • PDF

Effect of repair methods and materials on the flexural strength of 3D-printed denture base resin

  • Viotto, Hamile Emanuella do Carmo;Silva, Marcela Dantas Dias;Nunes, Thais Soares Bezerra Santos;Coelho, Sabrina Romao Goncalves;Pero, Ana Carolina
    • The Journal of Advanced Prosthodontics
    • /
    • v.14 no.5
    • /
    • pp.305-314
    • /
    • 2022
  • PURPOSE. The aim of this study was to evaluate the flexural strength of a 3D-printed denture base resin (Cosmos Denture), after different immediate repair techniques with surface treatments and thermocycling. MATERIALS AND METHODS. Rectangular 3D-printed denture base resin (Cosmos Denture) specimens (N = 130) were thermocycled (5,000 cycles, 5℃ and 55℃) before and after the different repair techniques (n = 10 per group) using an autopolymerized acrylic resin (Jet, J) or a hard relining resin (Soft Confort, SC), and different surface treatments: Jet resin monomer for 180 s (MMA), blasting with aluminum oxide (JAT) or erbium: yttrium-aluminum-garnet laser (L). The control group were intact specimens. A three-point flexural strength test was performed, and data (MPa) were analyzed by ANOVA and Games-Howell post hoc test (α = 0.05). Each failure was observed and classified through stereomicroscope images and the surface treatments were viewed by scanning electron microscope (SEM). RESULTS. Control group showed the highest mean of flexural strength, statistically different from the other groups (P < .001), followed by MMA+J group. The groups with L treatment were statistically similar to the MMA groups (P > .05). The JAT+J group was better than the SC and JAT+SC groups (P < .05), but similar to the other groups (P > .05). Adhesive failures were most observed in JAT groups, especially when repaired with SC. The SEM images showed surface changes for all treatments, except JAT alone. CONCLUSION. Denture bases fabricated with 3D-printed resin should be preferably repaired with MMA+J. SC and JAT+SC showed the worst results. Blasting impaired the adhesion of the SC resin.