• Title/Summary/Keyword: Equivalent temperature

Search Result 968, Processing Time 0.037 seconds

Measurement of Operator Exposure During Treatment of Fungicide Difenoconazole on Grape Orchard (포도 과수원에서 살균제 Difenoconazole의 농작업자 노출량 측정)

  • Cho, ll Kyu;Park, Joon Seong;Park, So Hyun;Kim, Su Jin;Kim, Back Jong;Na, Tae Wong;Nam, Hyo Song;Park, Kyung Hun;Lee, Jiho;Kim, Jeong-Han
    • Korean Journal of Environmental Agriculture
    • /
    • v.35 no.4
    • /
    • pp.286-293
    • /
    • 2016
  • BACKGROUND: 18% of difenoconazole+iminoctadin triacetate microemulsion (3%+15%) formulation were mixed and sprayed as closely as possible to normal practice on the ten of farms located in the Youngju of South Korea. Patches, cotton gloves, socks, masks and XAD-2 resin were used to measure the potential exposure for applicators wearing standardized whole-body outer and inner dosimeter (WBD). This study has been carried out to determine the dermal and inhalation exposure to difenoconazole during preparation of spray suspension and application with a power sprayer on a grape orchard. METHODS AND RESULTS: A personal air monitor equipped with an air pump IOM sampler and cassette and glass fiber filter were used for inhalation exposure. The field studies were carried out in a grape orchard. The temperature and relative humidity were monitored with a thermometer and a hygrometer. Wind speed was measured using a pocket weather meter. All mean field fortification recoveries were between 97.3% and 119.6% in the level of 100 LOQ (limit of quantification) while the LOQ for difenoconazole was $0.025{\mu}g/mL$ using HPLC-UVD. The arms exposure to difenoconazole for the mixer/loader (0.0794 mg) was higher than other body parts (head, hands, upper body, legs). The exposure to difenoconazole in the legs for applicator (3.78 mg) was highest in the parts of body. The dermal exposure for mixer/loader and applicator were 0.02 and 2.28 mg on a grape orchard, respectively. The inhalation exposure during application was estimated as 0.02 mg. The ratio of inhalation exposure to dermal exposure was equivalent to 0.9% of the dermal exposure. CONCLUSION: The inhalation exposure for applicator indicated $18.8{\times}10^{-3}mg$, which was level of 0.9% of the dermal exposure (2.28 mg). Operator exposure (0.004 mg/kg bw/day) to difenoconazole during treatment for grape is calculated as 2.5% of the established AOEL (0.16 mg/kg bw/day).

Fluid Inclusions Trapped in Tourmaline from the Daeyou Pegmatite Deposit, Jangsu-Gun, Jeollabukdo (전북 장수군 대유 페그마타이트광산의 전기석에 포획된 유체포유물)

  • Lee, Ju-Youn;Eom, Young-Bo;Nam, Bok-Hyun;Hwang, Byoung-Hoon;Yang, Kyoung-Hee
    • Journal of the Mineralogical Society of Korea
    • /
    • v.20 no.1 s.51
    • /
    • pp.7-19
    • /
    • 2007
  • Four types of fluid inclusions are trapped within tourmaline from Daeyou pegmatite, Jangsu-Gun, Jeonllabukdo. They range $5{\sim}100\;{\mu}m$ in size and are grouped into I, II, III, and IV based on the phase behavior at the room temperature: (1) Type I inclusions are liquid-rich and NaCl equivalent salinity ranged $0{\sim}12\;wt%$, and the homogenization temperatures (Th) ranged $181{\sim}230^{\circ}C$ with eutectic temperatures (Te) $-54{\sim}-22^{\circ}C$. (2) Type II inclusions are vapor-rich and salinity ranged $3{\sim}8\;wt%$ NaCl, and Th ranged $177{\sim}304^{\circ}C$ also showing Te $-54{\sim}-29^{\circ}C$. (3) Type III inclusions contain a halite daughter mineral with $31{\sim}40\;wt%$ NaCl, Th $230{\sim}328^{\circ}C$. More than 90% of Type III homogenize by halite dissolution and are spatially associated with silicate melt inclusions. (4) Type IV inclusions are $CO_{2}$-bearing containing various daughter minerals such as sylvite and/or halite. The density of $CO_{2}$ system within the Type IV is $0.80{\sim}0.75\;g/cm^{3}$, Th $190{\sim}317^{\circ}C$, and salinity $2{\sim}35\;wt%$ NaCl. Type III fluid inclusions, considered as the earliest fluid, formed from the fluid exsolved from the crystallizing pegmatite. It is suggested that Type II fluid in the central part of tourmaline were exsolved earlier than Type I fluids in the margin indicating salinity fluctuation during the growth of tourmaline. It implies the fluctuation of the pressure since the salinity of fluid exsolved from the crystallizing melt is governed by the pressure. The last fluid was Type IV, which may be derived from the nearby limestone and metasedimentary rocks. It is suggested that Daeyou pegmatite containing muscovite without miarolitic cavities was formed by the partial melting resulted from the regional metamorphism. Subsequently, the exsolving fluids from the crystallizing melt were trapped in tourmaline at high pressure condition. The exsolved fluids contain various components such as $CaCl_{2}\;and\;MgCl_{2}$ as well as NaCl and KCl. The exsolution began at least at $2.7{\sim}5.3\;kbar\;and\;230{\sim}328^{\circ}C$ with the pressure fluctuation.

Analyses of CO2 Concentration and Balance in a Closed Production System for King Oyster Mushroom and Lettuce (밀폐형 식물생산시스템 내 새송이 버섯과 상추의 혼합 재배 비율에 따른 CO2 농도 변화 및 균형 분석)

  • Jung, Dae Ho;Kim, Chan Kyo;Oh, Kyung Hun;Lee, Dong-Hyeon;Kim, Minsu;Shin, Jong Hwa;Son, Jung Eek
    • Horticultural Science & Technology
    • /
    • v.32 no.5
    • /
    • pp.628-635
    • /
    • 2014
  • The large amount of $CO_2$ emitted from mushrooms during incubation and developmental stages can be utilized in plant production systems as a $CO_2$ source. The objectives of this study were to measure the $CO_2$ emission and absorption rates of mushroom and lettuce, respectively, and to analyze the $CO_2$ concentrations at various ratios of mushroom and lettuce in a closed production system. The $CO_2$ emission rate of king oyster mushrooms (Pleurotus eryngii ( DC.) Qu$\acute{e}$l) and $CO_2$ absorption rate of lettuces (Lactuca sativa L. cv. Asia Heuk Romaine) were measured by using two closed acryl chambers ($1.0m{\times}0.8m{\times}0.5m$) in which indoor temperatures were maintained at $18^{\circ}C$ and $22^{\circ}C$, respectively. The lettuce was grown at a light intensity of PPF $340mol{\cdot}m^{-2}{\cdot}s^{-1}$ and with nutrient solution at EC $1.2dS{\cdot}m^{-1}$. The air was periodically circulated between the two chambers using a diaphragm pump. The $CO_2$ emission rate of the mushroom increased until the $15^{th}$ day after scratching (DAS) and then decreased. The rate also increased with increased indoor temperature. In particular, the $CO_2$ emission rate per fresh weight of fruit body increased by about 3.1 times after thinning compared to before thinning. In terms of $CO_2$ balance, the $CO_2$ emission rates from a bottle (950 mL) of the mushroom at 9, 12, and 14 DAS were equivalent to those of 3, 4.5, and 5.5 lettuce plants at 7, 10, and 12 DAT (days after transplanting), respectively. This work shows that balance in $CO_2$ concentration could be achieved using an appropriate ratio of the two crops in a closed production system.

Infrared Characteristics of Some Flash Light Sources (섬광의 적외선 특성 연구)

  • Lim, Sang-Yeon;Park, Seung-Man
    • Korean Journal of Optics and Photonics
    • /
    • v.27 no.1
    • /
    • pp.18-24
    • /
    • 2016
  • To effectively utilize a flash and predict its effects on an infrared device, it is essential to know the infrared characteristics of the flash source. In this paper, a study of the IR characteristics of flash light sources is carried out. The IR characteristics of three flash sources, of which two are combustive and the other is explosive, are measured with an IR characteristic measurement system over the middle- and long-wavelength infrared ranges. From the measurements, the radiances over the two IR ranges and the radiative temperatures of the flashes are extracted. The IR radiance of flash A is found to be the strongest among the three, followed by those of sources C and B. It is also shown that the IR radiance of flash A is about 10 times stronger than that of flash B, even though these two sources are the same type of flash with the same powder. This means that the IR radiance intensity of a combustive flash source depends only on the amount of powder, not on the characteristics of the powder. From the measured radiance over MWIR and LWIR ranges for each flashes, the radiative temperatures of the flashes are extracted by fitting the measured data to blackbody radiance. The best-fit radiative temperatures (equivalent to black-body temperatures) of the three flash sources A, B, and C are 3300, 1120, and 1640 K respectively. From the radiance measurements and radiative temperatures of the three flash sources, it is shown that a combustive source radiates more IR energy than an explosive one; this mean, in turn, that the effects of a combustive flash on an IR device are more profound than those of an explosive flash source. The measured IR radiances and radiative temperatures of the flash sources in this study can be used to estimate the effects of flashes on various IR devices, and play a critical role for the modeling and simulation of the effects of a flash source on various IR devices.

Human Thermal Sensation and Comfort of Beach Areas in Summer - Woljeong-ri Beach, Gujwa-eup, Jeju-si, Jeju Special Self-Governing Province - (여름철 해변지역의 인간 열환경지수 및 열쾌적성 - 제주특별자치도 제주시 구좌읍 월정리 해변 -)

  • Park, Sookuk;Sin, Jihwan;Jo, Sangman;Hyun, Cheolji;Kang, Hoon
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.44 no.4
    • /
    • pp.100-108
    • /
    • 2016
  • The climatic index for tourism(CIT) has recently been advanced, which includes complete human energy balance models such as physiological equivalent temperature(PET) and universal thermal climate index(UTCI). This study investigated human thermal sensation and comfort at Woljung-ri Beach, Jeju, Republic of Korea, in spring and summer 2015 for landscape planning and design in beach areas. Microclimatic data measurements and human thermal sensation/comfort surveys from ISO 10551 were conducted together. There were 869 adults that participated. As a result, perceptual and thermal preference that consider only physiological aspects had high coefficients of determination($r^2$) with PET in linear regression analyses: 92.8% and 87.6%, respectively. However, affective evaluation, personal acceptability and personal tolerance, which consider both physiological and psychological aspects, had low $r^2s$: 60.0%, 21.1% and 46.4%, respectively. However, the correlations between them and PET were all significant at the 0.01 level. The neutral PET range in perceptual for human thermal sensation was $25{\sim}27^{\circ}C$, but a PET range less or equal to 20% dissatisfaction, which was recommended by ASHRAE Standard 55, could not be achieved in perceptual. Only PET ranges in affective evaluation and personal tolerance affected by both aspects were qualified for the recommendation as $21{\sim}32^{\circ}C$ and $17{\sim}37^{\circ}C$, respectively. Therefore, the PET range of $21{\sim}32^{\circ}C$ is recommended to be used for the human thermal comfort zone of beach areas in landscape planning and design as well as tourism and recreational planning. PET heat stress level ranges on the beach were $2{\sim}5^{\circ}C$ higher than those in inland urban areas of the Republic of Korea. Also, they were similar to high results of tropical areas such as Taiwan and Nigeria, and higher than those of western and middle Europe and Tel Aviv, Israel.

The Behavior of Pitting Corrosion Associated with Microstructure of a Cast Lean Duplex Stainless Steel in Chloride Environments (염화물 환경에서 린 듀플렉스 스테인리스 주강의 미세조직과 연계한 공식 거동)

  • In-Sung Lee;Soon-Tae Kim;Chae-Jin Nam;Seung-Man Yang;In-Sung Cho;Seung-Mok Yoo
    • Journal of Korea Foundry Society
    • /
    • v.43 no.5
    • /
    • pp.230-240
    • /
    • 2023
  • The pitting corrosion behavior of 329LD cast lean duplex stainless steel and CF3M cast austenitic stainless steel was investigated in chloride environments. The pitting corrosion resistance of the 329LD alloy was superior to that of the CF3M alloy because the pitting potential, passive region, and critical pitting temperature of the low Ni-low Mo 329LD alloy were higher than those of the high Ni-medium Mo commercial CF3M alloy. There are two main reasons for the enhancement of the pitting corrosion resistance of high Cr-low Momedium N 329LD alloy compared to the low Cr-medium Mo CF3M alloy: First, the pitting resistance equivalent number (PRENδ+γ) value of the 329LD alloy is higher than that of the CF3M alloy. Second, the passive region of the 329LD alloy is larger than that of the CF3M alloy. It indicates that the synergistic effect of the three elements by adding high Cr and low Mo-medium N to the 329LD alloy enhances the passivity of the passive film, thereby increasing the pitting corrosion resistance. It was verified that based on the PRENγ of austenite (γ) and PRENδ of ferrite (δ) values calculated using an N-factor of 16, the pitting corrosion of the 329LD alloy was selectively initiated at the γ-phases because PRENγ value of austenite (γ) was smaller than that of ferrite (δ), and finally propagated from the γ-phase to the δ-phase.

Studies on the Drying Mechanism of Stratified Soil-Comparison between Bare Surface and Grass plot- (성층토양의 건조기구에 관한 연구)

  • 김철기
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.15 no.1
    • /
    • pp.2913-2924
    • /
    • 1973
  • This study was to investigate the drying mechanism of stratified soil by investigating 'effects of the upper soil on moisture loss of the lower soil and vice versa' and at the same time by examining how the drying progressed in the stratified soils with bare surface and with vegetated surface respectively. There were six plots of the stratified soils with bare surface($A_1- A_6$ plot) and the same other six plots($B_1- B_5$ plot), with vegetated surface(white clover). These six plots were made by permutating two kinds of soils from three kinds of soils; clay loam(CL). Sandy loam(SL). Sand(s). Each layer was leveled by saturating sufficient water. Depth of each plot was 40cm by making each layer 20cm deep and its area. $90{\times}90(cm^2)$. The cell was put at the point of the central and mid-depth of the each layer in the each plot in order to measure the soil moisture by using OHMMETER. soil moisture tester, and movement of soil water from out sides was cut off by putting the vinyl on the four sides. The results obtained were as follow; 1. Drying progressed from the surface layer to the lower layer regardless of plots. There was a tendency thet drying of the upper soil was faster than that of the lower soil and drying of the plot with vegetated surface was also faster than that of the plot with bare surface. 2. Soil moisture was recovered at approximately the field capacity or moisture equivalent by infiltration in the course of drying, when there was a rainfall. 3. Effects of soil texture of the lower soil on dryness of the upper soil in the stratified soil were explained as follows; a) When the lower soil was S and the upper, CL or SL, dryness of the upper soils overlying the lower soil of S was much faster than that overlying the lower soil of SL or CL, because sandy soil, having the small field capacity value and playing a part of the layer cutting off to some extent capillary water supply. Drying of SL was remarkably faster than that of CL in the upper soil. b) When the lower soil was SL and the upper S or CL, drying of the upper soil was the slowest because of the lower SL, having a comparatively large field capacity value. Drying of CL tended to be faster than that of S in the upper soil. c) When the lower soil was CL and the upper S or SL, drying of the upper soil was relatively fast because of the lower CL, having the largest field capacity value but the slowest capillary conductivity. Drying of SL tended to be faster than that of S in the upper soil. 4. According to a change in soil moisture content of the upper soil and the lower soil during a day there was a tendency that soil moisture contents of CL and SL in the upper soil were decreased to its minimum value but that of S increased to its maximum value, during 3 hours between 12.00 and 15.00. There was another tendency that soil moisture contents of CL, SL and S in the lower soil were all slightly decreased by temperature rising and those in a cloudy day were smaller than those in a clear day. 5. The ratio of the accumulated soil moisture consumption to the accumulated guage evaporation in the plot with vegetated surface was generally larger than that in the plot with bare surface. The ratio tended to decrease in the course of time, and also there was a tendency that it mainly depended on the texture of the upper soil at the first period and the texture of the lower soil at the last period. 6. A change in the ratio of the accumulated soil moisture consumption was larger in the lower soil of SL than in the lower soil of S. when the upper soil was CL and the lower, SL and S. The ratio showed the biggest figure among any other plots, and the ratio in the lower soil plot of CL indicated sligtly bigger than that in the lower soil plot of S, when the upper soil was SL and the lower, CL and S. The ratio showed less figure than that of two cases above mentioned, when the upper soil was S and the lower CL and SL and that in the lower soil plot of CL indicated a less ratio than that in the lower soil plot of SL. As a result of this experiments, the various soil layers wero arranged in the following order with regard to the ratio of the accumulated soil moisture consumption: SL/CL>SL/S>CL/SL>CL/S$\fallingdotseq$S/SL>S/CL.

  • PDF

Studies on Sclerotium rolfsii Sacc. isolated from Magnolia kobus DC. in Korea (목련(Magnolia kobus DC.)에서 분리한 흰비단병균(Sclerotium rolfsii Sacc.)에 관한 연구)

  • Kim Kichung
    • Korean journal of applied entomology
    • /
    • v.13 no.3 s.20
    • /
    • pp.105-133
    • /
    • 1974
  • The present study is an attempt to solve the basic problems involved in the control of the Sclerotium disease. The biologic stranis of Sclerotium rolfsii Sacc., pathogen of Sclerotium disease of Magnolia kobus, were differentiated, and the effects of vitamins, various nitrogen and carbon sources on its mycelial growth and sclerotial production have been investigated. In addition the relationship between the cultural filtrate of Penicillium sp. and the growth of Sclerotium rolfsii, the tolerance of its mycelia or sclerotia to moist heat or drought and to Benlate (methyl-(butylcarbamoy 1)-2-benzimidazole carbamate), Tachigaren (3-hydroxy-5-methylisoxazole) and other chemicals were also clarified. The results are summarizee as follows: 1. There were two biologic strains, Type-l and Type-2 among isolates. They differed from each other in the mode of growth and colonial appearance on the media, aversion phenomenon and in their pathogenicity. These two types had similar pathogenicity to the Magnolia kobus and Robinia pseudoacasia, but behaved somewhat differently to the soybaen and cucumber, the Type-l being more virulent. 2. Except potassium nitrite, sodium nitrite and glycine, all of the 12 nitrogen sources tested were utilized for the mycelial growth and sclerotial production of this fungus when 10r/l of thiamine hydrochloride was added in the culture solution. Considering the forms of nitrogen, ammonium nitrogen was more available than nitrate nitrogen for the growth of mycelia, but nitrate nitrogen was better for sclerotia formation. Organic nitrogen showed different availabilities according to compounds used. While nitrite nitrogen was unavailable for both mycelial growth and sclerotial formation whether thiamine hydrochlioride was added or not. 3. Seven kinds of carbon sources examined were not effective in general, as long as thiamine hydrochloride was not added. When thiamine hydrochloride was added, glucose and saccharose exhibited mycelial growth, while rnaltose and soluble starch gave lesser, and xylose, lactose, and glycine showed no effect at all,. In the sclerotial production, all the tested carbon sources, except lactose, were effective, and glucose, maltose, saccharose, and soluble starch gave better results. 4. At the same level of nitrogen, the amount of mycelial growth increased as more carbon Sources were applied but decreased with the increase of nitrogen above 0.5g/1. The amount of sclerotial production decreased wi th the increase of carbon sources. 5. Sclerotium rolfsii was thiamine-defficient and required thiamine 20r/l for maximun growth of mycelia. At a higher concentration of more than 20r/l, however, mycelial growth decreased as the concentration increased, and was inhibited at l50r/l to such a degree of thiamine-free. 6. The effect of the nitrogen sources on the mycelial growth under the presence of thiamine were recognized in the decreasing order of $NH_4NO_3,\;(NH_4)_2SO_4,\;asparagine,\;KNO_3$, and their effects on the sclerotial production in the order of $KNO_3,\;NH_4NO_3,\;asparagine,\;(NH_4)_2SO_4$. The optimum concentration of thiamine was about 12r/l in $KNO_3$ and about 16r/l in asparagine for the growth of mycelia; about 8r/l in $KNO_3$ and $NH_4NO_3$, and 16r/l in asparagine for the production of sclerotia. 7. After the fungus started to grow, the pH value of cultural filtrate rapidly dropped to about 3.5. Hereafter, its rate slowed down as the growth amount increased and did not depreciated below pH2.2. 8. The role of thiamine in the growth of the organism was vital. If thiamine was not added, the combination of biotin, pyridoxine, and inositol did not show any effects on the growth of the organism at all. Equivalent or better mycelial growth was recognized in the combination of thiamine+pyridoxine, thiamine+inositol, thiamine+biotin+pyridoxine, and thiamine+biotin+pyridoxine+inositol, as compared with thiamine alone. In the combinations of thiamine+biotin and thiamine+biotin+inositol, mycelial growth was inhibited. Sclerotial production in dry weight increased more in these combinations than in the medium of thiamine alone. 9. The stimulating effects of the Penicillium cultural filtrate on the mycelial growth was noticed. It increased linearly with the increase of filtrate concentration up to 6-15 ml/50ml basal medium solution. 10. $NH_4NO_3$. as a nitrogen source for mycelial growth was more effective than asparasine regardless of the concentration of cultural filtrate. 11. In the series of fractionations of the cultural filtrate, mycelial growth occured in unvolatile, ether insoluble cation-adsorbed or anion-unadsorbed substance fractions among the fractions of volatile, unvolatile acids, ether soluble organic acids, ether insoluble, cation-adsorbed, cation-unadsorbed, anion-adsorbed and anion-unadsorbed. and anion-un-adsorbed substance tested. Sclerotia were produced only in cation-adsorbed fraction. 12. According to the above results, it was assumed that substances for the mycelial growth and sclerotial formation and inhibitor of sclerotial formation were include::! in cultural filtrate and they were quite different from each other. I was further assumed that the former two substances are un volatile, ether insotuble, and adsorbed to cation-exchange resin, but not adsorbed to anion, whereas the latter is unvolatile, ether insoluble, and not adsorbed to cation or anion-exchange resin. 13. Seven amino acids-aspartic acid, cystine, glysine, histidine, Iycine, tyrosine and dinitroaniline-were detected in the fractions adsorbed to cation-exchange resin by applying the paper chromatography improved with DNP-amino acids. 14. Mycelial growth or sclerotial production was not stimulated significantly by separate or combined application of glutamic acid, aspartic acid, cystine, histidine, and glysine. Tyrosine gave the stimulating effect when applied .alone and when combined with other amino acids in some cases. 15. The tolerance of sclerotia to moist heat varied according to their water content, that was, the dried sclerotia are more tolerant than wet ones. The sclerotia harvested directly from the media, both Type-1 and Type-2, lost viability within 5 minutes at $52^{\circ}C$. Sclerotia dried for 155 days at$26^{\circ}C$ had more tolerance: sclerotia of Type-l were killed in 15 mins. at $52^{\circ}C$ and in 5 mins. at $57^{\circ}C$, and sclerotia of Type-2 were killed in 10 mins. both at $52^{\circ}C$ or $57^{\circ}C$. 16. Cultural sclerotia of both strains maintained good germinability for 132 days at$26^{\circ}C$. Natural sclerotia of them stored for 283 days under air dry condition still had good germinability, even for 443 days: type-l and type-2 maintained $20\%$ and $26.9\%$ germinability, respectively. 17. The tolerance to low temperature increased in the order of mycelia, felts and sclerotia. Mycelia completely lost the ability to grow within 1 week at $7-8^{\circ}C$> below zero, while mycelial felts still maintained the viability after .3 weeks at $7-20^{\circ}C$ below zero, and sclerotia were even more tolerant. 18. Sclerotia of type-l and type-2 were killed when dipped into the $0.05\%$ solution of mercury chloride for 180 mins. and 240 mins. respectively: and in the $0.1\%$ solution, Type-l for 60 mins. and Type-2 for 30 mins. In the $0.125\%$ uspulun solution, Type-l sclerotia were killed in 180 mins., and those of Type-2 were killed for 90 mins. in the$0.125\%$solution. Dipping into the $5\%$ copper sulphate solution or $0.2\%$ solution of Ceresan lime or Mercron for 240 mins. failed to kill sclerotia of either Type-l or Type-2. 19. Inhibitory effect on mycelial growth of Benlate or Tachi-garen in the liquid culture increased as the concentration increased. 6 days after application, obvious inhibitory effects were found in all treatments except Benlate 0.5ppm; but after 12 days, distingushed diflerences were shown among the different concentrations. As compared with the control, mycelial growth was inhibited by $66\%$ at 0.5ppm and by $92\%$ at 2.0ppm of Benlate, and by$54\%$ at 1ppm and about $77\%$ at 1.5ppm or 2.0ppm of Tachigaren. The mycelial growth was inhibited completely at 500ppm of both fungicides, and the formation of sclerotia was checked at 1,000ppm of Benlate ant at 500ppm or 1,000ppm of Tachigaren. 20. Consumptions of glucose or ammonium nitrogen in the culture solution usually increased with the increment of mycelial growth, but when Benlate or Tachigaren were applied, consumptions of glucose or ammonium nitrogen were inhibited with the increment of concentration of the fungicides. At the low concentrations of Benlate (0.5ppm or 1ppm), however, ammonium nitrogen consumption was higher than that of the ontrol. 21. The amount of mycelia produced by consuming 1mg of glucose or ammonium nitrogen in the culture solution was lowered markedly by Benlate or Tachigaren. Such effects were the severest on the third day after their treatment in all concentrations, and then gradually recovered with the progress of time. 22. In the sand culture, mycelial growth was not inhibited. It was indirectly estimated by the amount of $CO_2$ evolved at any concentrations, except in the Tachigaren 100mg/g sand in which mycelial growth was inhibited significantly. Sclerotial production was completely depressed in the 10mg/g sand of Benlate or Tachigaren. 23. There was no visible inhibitory effect on the germination of sclerotia when the sclerotia were dipped in the solution 0.1, 1.0, 100, 1.000ppm of Benlate or Tachigaren for 10 minutes or even 20 minutes.

  • PDF