• 제목/요약/키워드: Equivalent stiffness model

검색결과 234건 처리시간 0.025초

Ratio of predicted and observed natural frequency of finite sand stratum

  • Prathap Kumar, M.T.;Ramesh, H.N.;Raghavendra Rao, M.V.;Raghunandan, M.E.
    • Geomechanics and Engineering
    • /
    • 제1권3호
    • /
    • pp.219-239
    • /
    • 2009
  • Vertical vibration tests were conducted using model footings of different size and mass resting on the surface of finite sand layer with different height to width ratios and underlain by either rigid concrete base or natural red-earth base. A comparative study of the ratio of predicted and observed natural frequency ratio of the finite sand stratum was made using the calculated values of equivalent stiffness suggested by Gazetas (1983) and Baidya and Muralikrishna (2001). Comparison of results between model footings resting on finite sand stratum underlain by the rigid concrete base and the natural red-earth base showed that, the presence of a finite base of higher rigidity increases the resonant frequency significantly. With increase in H/B ratio beyond 2.0, the influence of both the rigid concrete and natural red-earth base decreases. Increase in the contact area of the footing increases the resonant frequency of the model footings resting on finite sand stratum underlain by both the types of finite bases. Both the predicted and the observed resonant frequency ratio decreases with increase in force rating and height to width ratio for a given series of model footing.

상용 버스용 알루미늄 시트 프레임의 개발에 관한 연구 (A Study on the Development of Aluminum Seat Frame for Commercial Bus)

  • 우호광;이상복;김상범;김헌영
    • 한국자동차공학회논문집
    • /
    • 제12권3호
    • /
    • pp.91-100
    • /
    • 2004
  • This study presents the development of a new aluminum seat frame for the commercial bus. Back moment and seat belt anchorage analysis of the conventional steel seat frame was conducted as a base model. Effective aluminum section dimensions for aluminum pipe were calculated from equivalent stiffness and equivalent weight study. Back moment and seat belt anchorage strength with the developed aluminum seat frame were compared to those of the base model. Additionally, to pass the fatigue test, shape modification of side frame assembly was conducted. From this study we could reduce the weight of seat frame more than 5 kg. And the current analysis model and procedure can provide useful informations in designing a new commercial car seat and can reduce the overall design cost and time.

등가형상을 이용한 딤플형 금속 샌드위치 판재의 효율적 굽힘 거동 예측 (Efficient Methods of Prediction Incorporating Equivalent Models for Elasto-Plastic Bending Behavior of Metallic Sandwich Plates with Inner Dimpled Shell Structure)

  • 성대용;정창균;윤석준;양동열
    • 소성∙가공
    • /
    • 제14권8호통권80호
    • /
    • pp.718-724
    • /
    • 2005
  • An efficient finite element method has been introduced for analysis of metallic sandwich plates subject to bending moment. A full model 3-point bending FE-analysis shows that the plastic behavior of inner structures appears only at the load point. The unit structures of sandwich plates are defined to numerically calculate the bending stiffness and strength utilizing the recurrent boundary condition for pure bending analysis. The equivalent models with the same bending stiffness and strength of full models are then designed analytically. It is demonstrated that the results of both models are almost the same and the FE-analysis method incorporating the equivalent models can reduce the computation time effectively. The dominant collapse modes are face buckling and face yielding. Since the inner dimpled structures prevent face buckling, sandwich plates with inner dimpled shell structure can absorb more energy than other types of sandwich plates during the bending behavior.

다경간 현수교 주탑 설계를 위한 등가 현수교 모델 (Equivalent Suspension Bridge Model for Tower Design of Multi-span Suspension Bridges)

  • 최동호;나호성;이지엽;권순길
    • 한국강구조학회 논문집
    • /
    • 제23권6호
    • /
    • pp.669-677
    • /
    • 2011
  • 다경간 현수교란 3개 이상의 주탑을 가지는 현수교로 중앙부에 주 경간을 2개 이상 가지는 현수교이다. 다경간 현수교 설계시 중앙주탑과 측주탑의 적절한 강성비를 가지도록 설계하는 것이 경제성이나 구조적인 효율성 측면에서 중요하다. 본 연구는 다경간 현수교의 중앙주탑과 측주탑의 적절한 강성비를 찾기 위해 다경간 현수교의 거동을 용이하게 파악할 수 있는 간편한 방법을 제안하는 것을 목적으로 하고 있다. 그 방법으로 다경간 현수교의 주케이블을 등가의 케이블 스프링으로 이상화하고, 주케이블에 작용하는 장력을 주탑상단에 수평력과 수직력의 외력으로 치환시키는 방법으로 다경간 현수교를 등가 다경간 현수교 모델로 치환하였다. 등가 다경간 현수교 모델에 대한 평형방정식을 유도하고 비선형해석을 통해 방정식의 해를 구하였다. 중앙지간장 3,000m의 4경간 현수교의 FEM 해석을 통해 각 주탑에서 발생하는 변위와 모멘트 반력을 계산하고, 이 결과를 등가 4경간 현수교 모델의 해석결과와 비교하여 본 연구의 연구결과를 검증하였다. 검증 결과, 본 연구의 제안방법은 FEM 해석결과와 비슷한 경향을 나타내었다.

Analytical and numerical investigation of the cyclic behavior of angled U-shape damper

  • Kambiz Cheraghi;Mehrzad TahamouliRoudsari
    • Steel and Composite Structures
    • /
    • 제51권3호
    • /
    • pp.325-335
    • /
    • 2024
  • Yielding dampers exhibit varying cyclic behavior based on their geometry. These dampers not only increase the energy dissipation of the structure but also increase the strength and stiffness of the structure. In this study, parametric investigations were carried out to explore the impact of angled U-shape damper (AUSD) dimensions on its cyclic behavior. Initially, the numerical model was calibrated using the experimental specimen. Subsequently, analytical equations were presented to calculate the yield strength and elastic stiffness, which agreed with the experimental results. The outcomes of the parametric studies encompassed ultimate strength, effective stiffness, energy dissipation, and equivalent viscous damper ratio (EVDR). These output parameters were compared with similar dampers. Also, the magnitude of the effect of damper dimensions on the results was investigated. The results of parametric studies showed that the yield strength is independent of the damper width. The length and thickness of the damper have the greatest effect on the elastic stiffness. Reducing length and width resulted in increased energy dissipation, effective stiffness, and ultimate strength. Damper width had a more significant effect on EVDR than its length. On average, every 5 mm increase in damper thickness resulted in a 3.6 times increase in energy dissipation, 3 times the effective stiffness, and 3 times the ultimate strength of the model. Every 15 mm reduction in damper width and length increased energy dissipation by 14% and 24%, respectively.

Effect of relative stiffness on seismic response of subway station buried in layered soft soil foundation

  • Min-Zhe Xu;Zhen-Dong Cui;Li Yuan
    • Geomechanics and Engineering
    • /
    • 제36권2호
    • /
    • pp.167-181
    • /
    • 2024
  • The soil-structure relative stiffness is a key factor affecting the seismic response of underground structures. It is of great significance to study the soil-structure relative stiffness for the soil-structure interaction and the seismic disaster reduction of subway stations. In this paper, the dynamic shear modulus ratio and damping ratio of an inhomogeneous soft soil site under different buried depths which were obtained by a one-dimensional equivalent linearization site response analysis were used as the input parameters in a 2D finite element model. A visco-elasto-plastic constitutive model based on the Mohr-Coulomb shear failure criterion combined with stiffness degradation was used to describe the plastic behavior of soil. The damage plasticity model was used to simulate the plastic behavior of concrete. The horizontal and vertical relative stiffness ratios of soil and structure were defined to study the influence of relative stiffness on the seismic response of subway stations in inhomogeneous soft soil. It is found that the compression damage to the middle columns of a subway station with a higher relative stiffness ratio is more serious while the tensile damage is slighter under the same earthquake motion. The relative stiffness has a significant influence on ground surface deformation, ground acceleration, and station structure deformation. However, the effect of the relative stiffness on the deformation of the bottom slab of the subway station is small. The research results can provide a reference for seismic fortification of subway stations in the soft soil area.

유전자 알고리즘을 이용한 SUSPENSION SEAT SYSTEM의 진동 승차감 최적화 (Vibration Ride Quality Optimization of a Suspension Seat System Using Genetic Algorithm)

  • 박선균;최영휴;최헌오;배병태
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집B
    • /
    • pp.584-589
    • /
    • 2001
  • This paper presents the dynamic parameter design optimization of a suspension seat system using the genetic algorithm. At first, an equivalent 1-D.O.F. mass-spring-damper model of a suspension seat system was constructed for the purpose of its vibration analysis. Vertical vibration response and transmissibility of the equivalent model due to base excitations, which are defined in the ISO's seat vibration test codes, were computed. Furthermore, seat vibration test, that is ISO's damping test, was carried out in order to investigate the validity of the equivalent suspension seat model. Both analytical and experimental results showed good agreement each other. For the design optimization, the acceleration transmissibility of the suspension seat model was adopted as an object function. A simple genetic algorithm was used to search the optimum values of the design variables, suspension stiffness and damping coefficient. Finally, vibration ride performance test results showed that the optimum suspension parameters gives the lowest vibration transmissibility. Accordingly the genetic algorithm and the equivalent suspension seat modelling can be successfully adopted in the vibration ride quality optimization of a suspension seat system.

  • PDF

Practical design guidlines for semi-continuous composite braced frames

  • Liew, J.Y. Richard;Looi, K.L.;Uy, Brian
    • Steel and Composite Structures
    • /
    • 제1권2호
    • /
    • pp.213-230
    • /
    • 2001
  • This paper presents a simplified approach for the design of semi-continuous composite beams in braced frames, where specific attention is given to the effect of joint rotational stiffness. A simple composite beam model is proposed incorporating the effects of semi-rigid end connections and the nonprismatic properties of a 'cracked' steel-concrete beam. This beam model is extended to a sub-frame in which the restraining effects from the adjoining members are considered. Parametric studies are performed on several sub-frame models and the results are used to show that it is possible to correlate the amount of moment redistribution of semi-continuous beam within the sub-frame using an equivalent stiffness of the connection. Deflection equations are derived for semi-continuous composite beams subjected to various loading and parametric studies on beam vibrations are conducted. The proposed method may be applied using a simple computer or spreadsheet program.

에너지 방법을 이용한 Euler-Bernoulli 보의 손상 규명 (Crack Identification of Euler-Bernoulli Beam Using the Strain Energy Method)

  • 허영철;김재관;김병현
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 추계학술대회논문집
    • /
    • pp.396-400
    • /
    • 2006
  • We studied the influences of open cracks in free vibrating beam with rectangular section using a numerical model. The crack was assumed to be single and always open during the free vibration and equivalent bending stiffness of a cracked beam was calculated based on the strain energy balance. By Galerkin's method, the frequencies of cantilever beam could he obtained with respect to various crack depths and locations. Also, the experiments on the cracked beams were carried out to find natural frequencies. The cracks were initiated at five locations and the crack depths were increased by five steps at each location. The experimental results were compared with the numerical results and the comparison results were discussed.

  • PDF

생산 전동기 로터 적층 코어의 동특성 조사 (Dynamic Characteristics of Laminated Rotor Core of Electric Motor Products)

  • 김관영;문병윤;이수목
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 추계학술대회논문집
    • /
    • pp.275-278
    • /
    • 2005
  • The dynamic characteristics of rotor shafts for electric motors were investigated through the modal tests. The natural frequencies and modal dampings in each manufacturing stage of rotor core assembly were analyzed from the frequency response functions fer all 6 motors of a product model. The deviation of the each individual modal feature was found dependent on the mode shapes as well as the rotor assembly stage. The core stacking itself is known to widen the deviation of modal properties but fellowing processes of rotor bar insertion and swaging are confirmed to reduce the deviation. Finally the equivalent diameter of core part was estimated from the comparison of measured and calculated results to include the stiffness of core part.

  • PDF