• Title/Summary/Keyword: Equivalent static analysis method

검색결과 197건 처리시간 0.024초

동하중을 받는 구조물의 등가정하중 기반 구조최적화 연구 (Structural Optimization based on Equivalent Static Load for Structure under Dynamic Load)

  • 김현기;김의영;조맹효
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2013년도 추계학술대회 논문집
    • /
    • pp.236-240
    • /
    • 2013
  • Due to difficulty of considering dynamic load in side of a computer resource and computing time, it is common that external load is assumed as ideal static load. However, structural analysis under static load cannot guarantee the safety of structural design. Recently, the systematic method to construct equivalent static load from the given dynamic load has been proposed. Previous study has calculated equivalent static load through the optimization procedure under displacement constraints. And previously reported works to distribute equivalent static load were based on ad hoc methods. However, it is appropriate to take into account the stress constraint for the safety design. Moreover, the improper selection of loading position may results in unreliable structural design. The present study proposes the methodology to optimize an equivalent static which distributed on the primary DOFs, DOFs of the constraint elements, DOF of an external load as positions. In conclusion, the reliability of proposed method is demonstrated through a global optimization.

  • PDF

등가정하중을 이용한 구조최적설계 방법을 이용한 비선형 거동구조물의 최적설계 (Non-linear Structural Optimization Using NROESL)

  • 박기종;박경진
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.1256-1261
    • /
    • 2004
  • Nonlinear Response Optimization using Equivalent Static Loads (NROESL) method/algorithm is proposed to perform optimization of non-linear response structures. It is more expensive to carry out nonlinear response optimization than linear response optimization. The conventional method spends most of the total design time on nonlinear analysis. Thus, the NROESL algorithm makes the equivalent static load cases for each response and repeatedly performs linear response optimization and uses them as multiple loading conditions. The equivalent static loads are defined as the loads in the linear analysis, which generates the same response field as those in non-linear analysis. The algorithm is validated for the convergence and the optimality. The function satisfies the descent condition at each cycle and the NROESL algorithm converges. It is mathematically validated that the solution of the algorithm satisfies the Karush-Kuhn-Tucker necessary condition of the original nonlinear response optimization problem. The NROESL algorithm is applied to two structural problems. Conventional optimization with sensitivity analysis using the finite difference method is also applied to the same examples. The results of the optimizations are compared. The proposed method is very efficient and derives good solutions.

  • PDF

Static Equivalent Model of Inverter-based Distributed Energy Resource for Fault Analysis of Power Distribution Grid

  • Kim, Dong-Eok;Cho, Namhun;Yang, Seung-Kwon
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제2권4호
    • /
    • pp.569-575
    • /
    • 2016
  • In this paper, we propose a method to develop a static equivalent model of an inverter-based distributed energy resource (DER), where the model is used for a steady-state fault analysis of a power grid. First, we introduce the characteristics of an inverter-based DER as well as its general configuration. Then, we derive the equivalent model of the DER on the basis of the characteristics. Last, the performance of the proposed method is proven by the results of computer simulations.

Methods of analysis for buildings with uni-axial and bi-axial asymmetry in regions of lower seismicity

  • Lumantarna, Elisa;Lam, Nelson;Wilson, John
    • Earthquakes and Structures
    • /
    • 제15권1호
    • /
    • pp.81-95
    • /
    • 2018
  • Most buildings feature core walls (and shear walls) that are placed eccentrically within the building to fulfil architectural requirements. Contemporary earthquake design standards require three dimensional (3D) dynamic analysis to be undertaken to analyse the imposed seismic actions on this type of buildings. A static method of analysis is always appealing to design practitioners because results from the analysis can always be evaluated independently by manual calculation techniques for quality control purposes. However, the equivalent static analysis method (also known as the lateral load method) which involves application of an equivalent static load at a certain distance from the center of mass of the buildings can generate results that contradict with results from dynamic analysis. In this paper the Generalised Force Method of analysis has been introduced for multi-storey buildings. Algebraic expressions have been derived to provide estimates for the edge displacement ratio taking into account the effects of dynamic torsional actions. The Generalised Force Method which is based on static principles has been shown to be able to make accurate estimates of torsional actions in seismic conditions. The method is illustrated by examples of two multi-storey buildings. Importantly, the black box syndrome of a 3D dynamic analysis of the building can be circumvented.

Equivalent static wind load estimation in wind-resistant design of single-layer reticulated shells

  • Li, Yuan-Qi;Tamura, Yukio
    • Wind and Structures
    • /
    • 제8권6호
    • /
    • pp.443-454
    • /
    • 2005
  • Wind loading is very important, even dominant in some cases, to large-span single-layer reticulated shells. At present, usually equivalent static methods based on quasi-steady assumption, as the same as the wind-resistant design of low-rise buildings, are used in the structural design. However, it is not easy to estimate a suitable equivalent static wind load so that the effects of fluctuating component of wind on the structural behaviors, especially on structural stability, can be well considered. In this paper, the effects of fluctuating component of wind load on the stability of a single-layer reticulated spherical shell model are investigated based on wind pressure distribution measured simultaneously in the wind tunnel. Several methods used to estimate the equivalent static wind load distribution for equivalent static wind-resistant design are reviewed. A new simple method from the stability point of view is presented to estimate the most unfavorable wind load distribution considering the effects of fluctuating component on the stability of shells. Finally, with comparisive analyses using different methods, the efficiency of the presented method for wind-resistant analysis of single-layer reticulated shells is established.

연쇄붕괴의 동적거동을 고려한 새로운 등가정적해석 기법 (New Equivalent Static Analysis Method of Dynamic Behavior during Progressive Collapse)

  • 김치경;이재철
    • 한국전산구조공학회논문집
    • /
    • 제20권3호
    • /
    • pp.239-246
    • /
    • 2007
  • 본 논문에서는 한두 부재의 순간적 결손에 따른 동적 거동을 정적해석을 통하여 합리적이고 효율적으로 해석할 수 있는 등가정적 연쇄붕괴 해석기법을 제시한다. 제시된 기법은 부재 결손에 따른 구조물 강성 변화 및 순간적 결손에 따른 동적거동 확대 효과를 등가의 하중으로 치환한 강성등가하중을 초기 구조물에 적용하여 해석하는 방법으로서 기둥을 하나씩 제거해 가며 반복해석을 수행해야 하는 연쇄붕괴해석 특성에 매우 효율적이면서도 신뢰성이 높은 장점을 갖는다. 제시한 강성등가하중에 의한 해석결과를 시간이력해석결과 및 GSA에 의한 해석결과와 비교한 결과, 휨모멘트, 축력, 및 수직변위 등의 측면에서 GSA에 의한 해석결과에 비해 시간이력해석결과에 상당히 근접하는 결과를 나타냈다. 이를 통해 강성등가 하중에 의한 해석기법이 GSA에 의한 정적해석방법을 대체하는 새로운 정적해석기법으로서 효용성이 있음을 확인하였다.

지중구조물의 내진해석방법에 관한 연구 (The Study on Seismic Analysis Methods for Underground Structures)

  • 정광모;방명석
    • 대한안전경영과학회:학술대회논문집
    • /
    • 대한안전경영과학회 2011년도 추계학술대회
    • /
    • pp.75-84
    • /
    • 2011
  • 본 논문에서는 지하공간에 설치되는 지중구조물에 대한 내진해석에 관한 연구로 구조물의 거동특성과 내진설계방법의 종류에 따라 수치해석을 실시하였다. 이를 위해 현재 가장 많이 실무에 적용되고 있는 내진설계방법인 등가정적해석법과 응답변위법을 적용하고 정밀한 해석이 가능한 시간이력해석법에 의해 검증을 시행하였으며 구조물 내진해석은 3-D 모델링에 의해 구조물-지반 상호작용을 고려하고 국내의 콘크리트구조설계기준에 따라 수행하였다. 해석 결과 현재 실무에서 적용되고 있는 등가정적해석법과 응답변위법을 적용하는 경우 정밀한 동적해석법 보다 다소 크게 산정되어 실무적용에 문제가 없음을 확인 할 수 있었다.

  • PDF

Convergence studies on static and dynamic analysis of beams by using the U-transformation method and finite difference method

  • Yang, Y.;Cai, M.;Liu, J.K.
    • Structural Engineering and Mechanics
    • /
    • 제31권4호
    • /
    • pp.383-392
    • /
    • 2009
  • The static and dynamic analyses of simply supported beams are studied by using the U-transformation method and the finite difference method. When the beam is divided into the mesh of equal elements, the mesh may be treated as a periodic structure. After an equivalent cyclic periodic system is established, the difference governing equation for such an equivalent system can be uncoupled by applying the U-transformation. Therefore, a set of single-degree-of-freedom equations is formed. These equations can be used to obtain exact analytical solutions of the deflections, bending moments, buckling loads, natural frequencies and dynamic responses of the beam subjected to particular loads or excitations. When the number of elements approaches to infinity, the exact error expression and the exact convergence rates of the difference solutions are obtained. These exact results cannot be easily derived if other methods are used instead.

정밀 전기, 전자 부품 성형을 위한 해석 틀의 활용 (Application of CAE for Precision Material Forming of Electric Parts)

  • 김석관;이재진;서장원
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1994년도 박판성형기술의 진보
    • /
    • pp.185-189
    • /
    • 1994
  • The key factor of quality in precision metal forming is to meet the requirements of parts size and shape. Particular problem of unflatness occurs frequently. This study focuses on figuring out the cause of unflatness. To predict the amount of unflatness after ejection from tool, equivalent temperature method is used. This method, temperature equivalent to the final stress value is calculated, and it is applied as the boundary condition of the linear static analysis. The final of formed part is used as the geometry model of the static analysis.

선형 등가정하중을 이용한 비선형 거동 구조물의 최적설계 (II) - 구조예제 - (Structural Optimization for Non-Linear Behavior Using Equivalent Static Loads (II) - Structural Examples -)

  • 박기종;박경진
    • 대한기계학회논문집A
    • /
    • 제29권8호
    • /
    • pp.1061-1069
    • /
    • 2005
  • In part I of this papter Nonlinear Response Optimization using Equivalent Static Loads (NROESL) method/algorithm is developed to conduct optimization for nonlinear behavior structures. The method/algorithm is also verified to show its convergency and optimality. In this present paper, the NROESL algorithm is applied to several structural problems with geometric and/or material nonlinearity. Conventional optimization with sensitivity analysis using the finite difference method is also applied to the same examples. The results of the optimizations are compared. The proposed method is very efficient and derives good solutions.