• Title/Summary/Keyword: Equivalent resistivity

Search Result 51, Processing Time 0.026 seconds

Influence of electrode geometry on electrical resistivity survey: Numerical study (전극의 기하학적 형상이 전기비저항 탐사에 미치는 영향: 수치 해석 연구)

  • Tae-Young Kim;Seung-Hun Lee;Hee-Hwan Ryu;Song-Hun Chong
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.25 no.2
    • /
    • pp.101-120
    • /
    • 2023
  • Electrical resistivity survey have been widely conducted at diverse scales, from a few centimeters for laboratory tests to kilometers for field tests. It measures electrical resistance through relationship of electric potential difference and current between two electrodes penetrated on the surface of medium, and eventually quantifies electrical resistivity known as inherent properties of the medium. In field or full-scale test, it assumes the electrodes as equivalent half-sphere electrodes that have a same surface area with different electrodes for ease of calculation because the contact area between electrode and medium is small and sufficient distance between two electrodes. However, small-scale laboratory test is significantly affected by the electrode geometries (penetrated depth, height, radius of electrode and distance between electrodes), which change the equipotential surface and electric current flow. Indeed, the electrode geometries may eventually cause a difference of electrical resistivity value. This study reviews the theoretical electrical resistance derived with various electrode geometries (half-sphere, cylinder, cylindrical with half-spherical tip, cylindrical with conical tip) and verifies the developed numerical module by comparing results with the theoretical electrical resistance. The distributions of electrical resistance around electrodes and among electrodes are analyzed. In addition, it is discussed how the electrical characteristic of cylindrical electrode with conical tip widely used in field test has effect on the electric current flow.

Frequency Characteristics of Anodic Oxide Films: Effects of Anodization Valtage

  • Lee, Dong-Nyung;Yoon, Young-Ku
    • Nuclear Engineering and Technology
    • /
    • v.6 no.1
    • /
    • pp.14-22
    • /
    • 1974
  • Effects of anodization voltage on frequency characteristics of anodic oxide films on tantalum were analyzed based on the following impedance equatious : (equation omitted) Here $R_{f}$, $C_{f}$ and tan $\delta$$_{f}$ are equivalent series resistance in ohm, equivalent Belies capacitance in farad and dielectric loss, of anodic oxide films respectively Parameters P, $\tau$$_{ο}$, $\tau$$_{\omega}$, and Co are defined as follows: P=(d-w)/w, $\tau$$_{ο}$=$textsc{k}$$\rho$$_{ο}$, $\tau$$_{\omega}$=$textsc{k}$$\rho$$_{\omega}$, $C_{ο}$=$textsc{k}$A/d where d is the thickness of oxide film, $\omega$ is the diffusion layer thickness. $\rho$$_{ο}$ is the resistivity of oxide film at the interface of metal and the oxide, $\rho$$_{\omega}$ is the resistivity of oxide film at intrinsic region and A is the area of the film and $textsc{k}$=0.0885$\times$10$^{-12}$ $\times$dielectric constant, (in farad/cm). It was shown that dielectric loss and frequency dependence of equivalent series capacitance decrease as anodization voltage increases. This is a consequence of the fact that the thickness of diffusion layer increases a little with increasing anodization voltage whereas the total oxide thickness is proportional to the anodization voltage. The ngative deviation of measured values from tile relation, tan $\delta$$_{f}$=0.682 $\Delta$ $C_{f}$, was also discussed based on the Impedance equations given above. Here $\Delta$ $C_{f}$ is the change in capacitance between 0.1 and 1 KHZ.KHZ.Z.

  • PDF

Improvements of Grounding Performances Associated with Soil Ionization under Impulse Voltages (임펄스전압에 의한 토양의 이온화에 따른 접지성능의 향상)

  • Kim, Hoe-Gu;Lee, Bok-Hee
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.12
    • /
    • pp.1971-1978
    • /
    • 2016
  • In this paper, electrical and physical characteristics associated with the ionization growth of soil under impulse voltages in a coaxial cylindrical electrode system to simulate a horizontally-buried ground electrode were experimentally investigated. The results were summarized as follows: Transient ground resistances decreased significantly by soil ionization. The voltage-current (V-I) curves for non-ionization in soil lined up in a straight line with the nearly same slope that is the ground resistance, but they showed a 'cross-closed loop' of ${\infty}$-shape under ionization. The conventional ground resistance and equivalent soil resistivity were inversely proportional to the peak value of injected impulse currents. On the other hand, the equivalent ionization radius and time-lag to the maximum value of ionization radius were increased with increasing the incident impulse voltages. An analysis method for the transient ground resistances of the ground electrode based on the ionization phenomena was proposed. The proposed method can be applied to analyze the transient performances of grounding systems for lightning protection in power system installations.

Loop-loop EM inversion and its applicability to subsurface exploration

  • Sasaki, Yutaka
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.3-6
    • /
    • 2006
  • There are three types of frequency-domain loop-loop EM induction method, depending on the loop separation and their location relative to the ground surface: horizontal-loop EM (HLEM), fixed small-loop EM, and helicopter-borne EM (HEM) methods. Multidimensional inversion provides tomographic images of the subsurface resistivity structure and thus enhances the interpretational accuracy of loop-loop EM data. HLEM method is shown to be effective for exploring groundwater resources in weathered and fractured crystalline basement terrains in semi-arid regions. Also, HEM method is useful for locating weak zones in landslide areas. The applicability of inversion to small-loop EM data depends solely on the S/N ratio. The quadrature response of small-loop EM data can only give the equivalent conductivity of a homogenous half-space model, and thus the in-phase component is essential in inverting EM data. However, the in-phase response is much lower and decreases more rapidly with decreasing frequency than the quadrature response. Further work is needed to obtain conductivity-depth images from small-loop EM data.

  • PDF

A Study on Application and Performance Verification of Aged Reservoir Reinforcing Method using Ground Injection Material of Utilizing Circulation Resources. (순환자원 활용 지반차수재의 노후저수지 보강 적용사례 및 성능검증에 관한 연구)

  • Park, Seong-hun;Seo, Se-Gwan;Song, Sang-Hwon
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.22 no.3
    • /
    • pp.17-24
    • /
    • 2020
  • Reservoirs, which make up most of South Korea's reservoirs, are located in rural areas. In the case of rural reservoirs, about 75% have been reported over 50 years old aged reservoirs constructed before the 1960s. Reservoirs are important facilities that store and supply water necessary for daily life. However, if it is destroyed, the reservoir can cause a lot of damage, so continuous management is necessary. As a method for strengthening old reservoirs, a method using cement has been widely applied. However, OPC is a product that uses a lot of carbon dioxide and natural resources. Therefore, the amount of cement should be reduced. Against this background, in this study, the ground injection material of utilizing circulation resources was applied to the site. Applied reservoirs have been around for 75 years and leaks have occurred in some sections. The application method was constructed in two rows, up to a depth of 12m. After reinforcement, the electrical resistivity test was conducted three times. As a result, similar resistance was shown at 1 month after construction. And after 6 months, the saturation area decreased. And the performance after reinforcing the aged reservoir was examined. As a result of the review, this study confirmed that the applicability was equivalent to that of OPC, and the excellent performance of reinforcing the aged reservoir was shown.

Quantification of Heterogenous Background Fractures in Bedrocks of Gyeongju LILW Disposal Site (경주 방폐장의 불균질 배경 단열의 정량화)

  • Cho, Hyunjin;Cheong, Jae-Yeol;Lim, Doo-hyun;Hamm, Se-Yeong
    • The Journal of Engineering Geology
    • /
    • v.27 no.4
    • /
    • pp.463-474
    • /
    • 2017
  • Heterogeneous background fractures of granite and sedimentary rocks in Gyeongju LILW (low-intermediate level radioactive waste) facility area have been characterized quantitatively by analyzing fracture parameters (orientation, intensity, and size). Surface geological survey, electrical resistivity survey, and acoustic televiewer log data were used to characterize the heterogeneity of background fractures. Bootstrap method was applied to represent spatial anisotropy of variably oriented background fractures in the study area. As a result, the fracture intensity was correlated to the inverse distance from the faults weighted by nearest fault size and the mean value of electrical resistivity and the average volumetric fracture intensity ($P_{32}$) was estimated as $3.1m^2/m^3$. Size (or equivalent radius) of the background fractures ranged from 1.5 m to 86 m and followed to power-law distribution based on the fractal property of fracture size, using fractures measured on underground silos and identified surface faults.

Electrochemical Characteristics of Hybrid Capacitor and Pulse Performance of Hybrid Capacitor / Li-ion Battery (Hybrid Capacitor의 전기화학적 특성 및 Hybrid Capacitor / Li-ion Battery의 펄스 방전 특성)

  • Lee, Sun-Young;Kim, Ick-Jun;Moon, Seong-In;Kim, Hyun-Soo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.12
    • /
    • pp.1133-1138
    • /
    • 2005
  • In this study, we have prepared, as the pluse power source, a commercially supplied Li-ion battery with a capacity of 700 mAh and AC resistivity of 60 md at 1 kHz and nonaqeous asymmetric hybrid capacitor composed of an activated carbon cathode and MCMB anode, and have examined the electrochemical characteristics of hybrid capacitor and the pulse performances of parallel connected hybrid capacitor/Li-ion battery source. The nonaqueous asymmetric hybrid capacitors constituted with each stack number of pairs composed of the cathode, the porous separator and the anode electrode were housed in Al-laminated film cell. The 10 stacked hybrid capacitor, which was charged and discharged at a constant current at 0.25 $mA/cm^2$ between 3 and 4.3 V, has exhibited the capacitance of 108F and the lowest equivalent series resistance was 32 $m{\Omega}$ at 1 kHz. On the other hand, the enhanced run time of Li-ion battery assisted by the hybrid capacitor was obtained with increasing of current density and pulse width in Pulse mode. The best improvement, $84\;\%$ for hybrid capacitor/Li-ion battery was obtained in the condition of a 7C-rate pulse (100 msec)/0.5C-rate standby/$10\;\%$ duty cycle.

Effects of Dried Days on Properties of Seawater and Freshwater Flooded CSPE in NPPs

  • Jeon, Hwang-Hyun;Lee, Jeong-U;Jeon, Jun-Soo;Lee, Seung-Hoon;Shin, Yong-Deok
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.1162-1168
    • /
    • 2015
  • Accelerated thermal aging of chlorosulfonated polyethylene (CSPE) was performed for 0 days, 80.82 days, and 161.63 days at 100℃, which is equivalent to 0 y, 40 y, and 80 y of aging, respectively, at 50℃. After freshwater flooding, the volume electrical resistivity of CSPE was highest after 180 days of drying, and its insulating property recovered when dried for more than 300 days. The dielectric constant of the CSPE was not measured after seawater flooding. The dielectric constant of the accelerated thermally aged CSPE was higher after freshwater flooding than that before seawater flooding. The bright, open pores of CSPE were converted into dark, closed pores after seawater flooding, and the dark, closed pores of the accelerated thermally aged CSPE samples were partly converted into bright, open pores after freshwater flooding. The apparent density of CSPE increased slightly whereas its elongation at break (EAB) decreased until 80 y of accelerated thermal aging before seawater flooding. The peak binding energies of oxygen in the non-accelerated and accelerated thermally aged CSPE for 40 y and 80 y were shifted by more than 1.0 eV after seawater and freshwater flooding. The CH2 content in the non-accelerated and accelerated thermally aged CSPE for 40 y and 80 y after seawater flooding for 5 days was lower than that before seawater flooding whereas atoms such as Cl, O, Pb, Al, Si, Sb, and S that are related to conducting ions such as Na+, Cl-, Mg2+, SO4 2-, and K+ were relatively increased.

Electrical and Optical Properties of Asymmetric Dielectric/Metal/Dielectric (D/M/D) Multilayer Electrode Prepared by Radio-Frequency Sputtering for Solar Cells

  • Pandey, Rina;Lim, Ju Won;Lim, Keun Yong;Hwang, Do Kyung;Choi, Won Kook
    • Journal of Sensor Science and Technology
    • /
    • v.24 no.1
    • /
    • pp.15-21
    • /
    • 2015
  • Transparent and conductive multilayer thin films consisting of three alternating layers FZTO/Ag/$WO_3$ have been fabricated by radio-frequency (RF) sputtering for the applications as transparent conducting oxides and the structural and optical properties of the resulting films were carefully studied. The single layer fluorine doped zinc tin oxide (FZTO) and tungsten oxide ($WO_3$) films grown at room temperature are found to have an amorphous structure. Multilayer structured electrode with a few nm Ag layer embedded in FZTO/Ag/$WO_3$ (FAW) was fabricated and showed the optical transmittance of 87.60 % in the visible range (${\lambda}=380{\sim}770nm$), quite low electrical resistivity of ${\sim}10^{-5}{\Omega}cm$ and the corresponding figure of merit ($T^{10}/R_s$) is equivalent to $3.0{\times}10^{-2}{\Omega}^{-1}$. The resultant power conversion efficiency of 2.50% of the multilayer based OPV is lower than that of the reference commercial ITO. Asymmetric D/M/D multilayer is a promising transparent conducting electrode material due to its low resistivity, high transmittance, low temperature deposition and low cost components.

Investigation of the Electromechanical Response of Smart Ultra-high Performance Fiber Reinforced Concretes Under Flexural (휨하중을 받는 스마트 초고강도 섬유보강 콘크리트의 전기역학적 거동 조사)

  • Kim, Tae-Uk;Kim, Min-Kyoung;Kim, Dong-Joo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.5
    • /
    • pp.57-65
    • /
    • 2022
  • This study investigated the electromechanical response of smart ultra-high performance fiber reinforced concretes (S-UHPFRCs) under flexural loading to evaluate the self-sensing capacity of S-UHPFRCs in both tension and compression region. The electrical resistivity of S-UHPFRCs under flexural continuously changed even after first cracking due to the deflection-hardening behavior of S-UHPFRCs with the appearance of multiple microcracks. As the equivalent bending stress increased, the electrical resistivity of S-UHPFRCs decreased from 976.57 to 514.05 kΩ(47.0%) as the equivalent bending stress increased in compression region, and that did from 979.61 to 682.28 kΩ(30.4%) in tension region. The stress sensitivity coefficient of S-UHPFRCs in compression and tension region was 1.709 and 1.098 %/MPa, respectively. And, the deflection sensitivity coefficient of S-UHPFRCs in compression region(30.06 %/mm) was higher than that in tension region(19.72 %/mm). The initial deflection sensing capacity of S-UHPFRCs was almost 50% of each deflection sensitivity coefficient, and it was confirmed that it has an excellent sensing capacity for the initial deflection. Although both stress- and deflection-sensing capacity of S-UHPFRCs under flexural were higher in compression region than in tension region, S-UHPFRCs are sufficient as a self-sensing material to be applied to the construction field.