• Title/Summary/Keyword: Equivalent properties

Search Result 1,224, Processing Time 0.03 seconds

Damping updating of a building structure installed with an MR damper

  • Woo, Sung-Sik;Lee, Sang-Hyun
    • Smart Structures and Systems
    • /
    • v.12 no.6
    • /
    • pp.695-705
    • /
    • 2013
  • The purpose of this paper is to identify through experiments the finite element (FE) model of a building structure using a magnetorheological (MR) fluid damper. The FE model based system identification (FEBSI) technique evaluates the control performance of an MR damper that has nonlinear characteristics as equivalent linear properties such as mass, stiffness, and damping. The Bingham and Bouc-Wen models were used for modeling the MR damper and the equivalent damping increased by the MR damper was predicted by applying an equivalent linearization technique. Experimental results indicate that the predicted equivalent damping matches well with the experimentally obtained damping.

Experimental Study on Equivalent Linear System for Rotational friction Damper (회전마찰감쇠기의 등가선형시스템에 관한 실험적 연구)

  • 김형섭;박지훈;민경원;이상현;이명규
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.10a
    • /
    • pp.296-303
    • /
    • 2004
  • In this study, equivalent linear damping and stiffness of a single-degree-of-freedom (SDOF) structure with a rotational friction damper are estimated using the result of experiments and compared with those obtained from non-linear time history analyses. First, the transfer function of the test model is constructed and then the equivalent stiffness and damping are calculated, using the half-power bandwidth (HPB) method. For comparative study, those properties are estimated based on stochastic theory in the time domain. Both equivalent linear systems identified from experiments and numerical analyses correspond well. Further, it is observed that there exists an optimal clamping force on the rotational friction damper from estimated equivalent damping.

  • PDF

A Vibration Analysis Model for Bellows in the Vehicle Exhaust System Using Method of Reduced Degree of Freedom (자유도 저감법을 이용한 자동차 배기시스템의 벨로우즈 진동해석)

  • Shim, Dong-Hyouk;Kim, Dae-Hyun;Choi, Myung-Jin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.304-308
    • /
    • 2006
  • The focus of this study is modeling technique for a bellows in vehicle exhaust system. Bellows was developed using tile finite element model by replacing with the equivalent beam. The equivalent beam model were studied in detail. Non-structural node in the cross section of original model is given to expressing their motion. Equivalent mass matrix and stiffness matrix calculated using Guyan reduction method. Material Properties of beam was obtained from the direct comparison between equivalent model and that of Timoshenko beam model. The calculated natural frequencies and mode shape are compared with the reference results and coincided well. The results were compared with the confirmed results, which were in good agreement.

  • PDF

Lumped Element MMIC Direction Coupler Based on Parallel Coupled-Line Theory (평행 결합선로 이론에 근거한 MMIC 집중 소자형 방향성 결합기)

  • Kang Myung-Soo;Park Jun-Seok;Lee Jae-Hak;Kim Hyeong-Seok
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.11
    • /
    • pp.577-582
    • /
    • 2004
  • In this paper, lumped equivalent circuits for a conventional parallel directional coupler are proposed. This equivalent circuits only have self inductance and self capacitance, so we can design exact lumped equivalent circuit. The equivalent circuit and design formula for the presented lumped element coupler is derived based on the even- and odd-mode properties of parallel-coupled line. By using the derived design formula, we have designed the 3dB and 4.7dB MMIC couplers at the center frequency of 3.4GHz and 5.6GHz respectively. Measurements for the designed MMIC directional couplers show at 4dB and 5.2dB-coupling value at the center frequency of 3.4GHz and 5.6GHz. Excellent agreements between simulation results and measurement results on the designed directional couplers show the validity of this paper

Thermal Analysis of Lithium-ion Cell Using Equivalent Properties and Lumped Capacitance Method (등가물성 및 집중용량법을 이용한 리튬-이온 전지의 열해석)

  • Lee, Hee Won;Park, Il Seouk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.8
    • /
    • pp.775-780
    • /
    • 2013
  • In general, the battery module of an electric vehicle (EV) consists of lithium-ion cells. A lithium-ion battery is a secondary rechargeable battery, and it consists of numerous stacked plates that serve as electrodes and separators. Owing to these microstructural features, its numerical analysis is very expensive. Therefore, this study aims to present a simplified thermal analysis model using equivalent thermal properties, and we compare the experimental results with numerical results for 185.3Ah and 20Ah cells. Furthermore, we show the thermal behavior of cells without the finite element method (FEM) or finite volume method (FVM) by adopting the lumped capacitance method (LCM).

Equivalent Dynamic Modeling of Coil Bundle for Prediction of Dynamic Properties of Stator in Small Motors (소형 전동기의 고정자 동특성 예측을 위한 코일 다발의 등가 동적 모형화)

  • 은희광;고홍석;김광준
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.540-545
    • /
    • 2001
  • In case of small motors, coil bundle occupies a large portion of stator in view of mass and volume as well as dynamics. It is observed through modal test on the stator of an IPM BLDC (interior permanent magnet brushless direct current) motor that coil bundle wound on the stator core causes the first and second natural frequencies to decrease by about 20-30% compared with those of bare stator. Especially the third natural frequency is newly observed below 3 KHz, which is not observed on the bare stator. It is found that at the third mode the end-coil and the core vibrate out of phase in radial direction. In this paper, the stator is dynamically modeled in terms of the core and the coil bundle consisting of the end-coil and the slot coil based on the above observations for the prediction of dynamic properties. The core can easily be modeled using finite element method with its actual material properties and geometric shape. The concept of equivalent bending stiffness is used for modeling of the end-coil so that predictions may match with the measured natural frequencies for the end-coil cut out of the stator. Although the same concept can be applied to the slot coil, separation of the slot coil from the stator is impractical. Therefore, equivalent bending stiffness of the slot coil is determined through iterative comparisons with the measurements of natural frequencies of the stator with the slot coil in it.

  • PDF

Finite Element Eigen Analysis of Undamped Beam Structure with Composite Sections (복합단면을 갖는 비 감쇠 보 구조물의 유한요소 고유치 해석)

  • Park, Keun-Man;Cho, Jin-Rae;Jung, Weui-Bong;Bae, Soo-Ryong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.6
    • /
    • pp.691-697
    • /
    • 2007
  • Numerical eigen analysis of beam-like structure can be easily and effectively done by various conventional beam theory-based methods. However, in case of the structures composed of composite-sectioned beams, the application of conventional numerical methods requires one to derive both equivalent material and geometry properties. In the present paper, these equivalent properties are derived by the transformed section method and the test FEM program is coded. The numerical accuracy of the proposed method is verified through the comparison with the ANSYS 3-D model.

Evaluation of early age mechanical properties of concrete in real structure

  • Wang, Jiachun;Yan, Peiyu
    • Computers and Concrete
    • /
    • v.12 no.1
    • /
    • pp.53-64
    • /
    • 2013
  • The curing temperature is known to influence the rate of mechanical properties development of early age concrete. In realistic sites the temperature of concrete is not isothermal $20^{\circ}C$, so the paper measured adiabatic temperature increases of four different concretes to understand heat emission during hydration at early age. The temperature-matching curing schedule in accordance with adiabatic temperature increase is adopted to simulate the situation in real massive concrete. The specimens under temperature-matching curing are subjected to realistic temperature for first few days as well as adiabatic condition. The mechanical properties including compressive strength, splitting strength and modulus of elasticity of concretes cured under both temperature-matching curing and isothermal $20^{\circ}C$ curing are investigated. The results denote that comparing temperature-matching curing with isothermal $20^{\circ}C$ curing, the early age concretes mechanical properties are obviously improved, but the later mechanical properties of concretes with pure Portland and containing silica fume are decreased a little and still increased for concretes containing fly ash and slag. On this basement using an equivalent age approach evaluates mechanical properties of early age concrete in real structures, the model parameters are defined by the compressive strength test, and can predict the compressive strength, splitting strength and elasticity modulus through measuring or calculating by finite element method the concreted temperature at early age, and the method is valid, which is applied in a concrete wall for evaluation of crack risking.

Equivalent frame model and shell element for modeling of in-plane behavior of Unreinforced Brick Masonry buildings

  • Kheirollahi, Mohammad
    • Structural Engineering and Mechanics
    • /
    • v.46 no.2
    • /
    • pp.213-229
    • /
    • 2013
  • Although performance based assessment procedures are mainly developed for reinforced concrete and steel buildings, URM (Unreinforced Masonry) buildings occupy significant portion of buildings in earthquake prone areas of the world as well as in IRAN. Variability of material properties, non-engineered nature of the construction and difficulties in structural analysis of masonry walls make analysis of URM buildings challenging. Despite sophisticated finite element models satisfy the modeling requirements, extensive experimental data for definition of material behavior and high computational resources are needed. Recently, nonlinear equivalent frame models which are developed assigning lumped plastic hinges to isotropic and homogenous equivalent frame elements are used for nonlinear modeling of URM buildings. The equivalent frame models are not novel for the analysis of masonry structures, but the actual potentialities have not yet been completely studied, particularly for non-linear applications. In the present paper an effective tool for the non-linear static analysis of 2D masonry walls is presented. The work presented in this study is about performance assessment of unreinforced brick masonry buildings through nonlinear equivalent frame modeling technique. Reliability of the proposed models is tested with a reversed cyclic experiment conducted on a full scale, two-story URM building at the University of Pavia. The pushover curves were found to provide good agreement with the experimental backbone curves. Furthermore, the results of analysis show that EFM (Equivalent Frame Model) with Dolce RO (rigid offset zone) and shell element have good agreement with finite element software and experimental results.

Simulations of PEC columns with equivalent steel section under gravity loading

  • Begum, Mahbuba;Ghosh, Debaroti
    • Steel and Composite Structures
    • /
    • v.16 no.3
    • /
    • pp.305-323
    • /
    • 2014
  • This paper presents numerical simulations of partially encased composite columns (PEC) with equivalent steel sections. The composite section of PEC column consists of thin walled welded H- shaped steel section with transverse links provided at regular intervals between the flanges. Concrete is poured in the space between the flanges and the web plate. Most of the structural analysis and design software do not handle such composite members due to highly nonlinear material behavior of concrete as well as due to the complex interfacial behaviour of steel and concrete. In this paper an attempt has been made to replace the steel concrete composite section by an equivalent steel section which can be easily incorporated in the design and analysis software. The methodology used for the formulation of the equivalent steel section is described briefly in the paper. Finite element analysis is conducted using the equivalent steel section of partially encased composite columns tested under concentric gravity loading. The reference test columns are obtained from the literature, encompassing a variety of geometric and material properties. The finite element simulations of the composite columns with equivalent steel sections are found to predict the experimental behaviour of partially encased composite columns with very good accuracy.