• Title/Summary/Keyword: Equivalent noise

Search Result 616, Processing Time 0.021 seconds

Analytical Evaluation of Airborne Noise for the Building Structure' on Railway Transportation Systems (철도부지 상부 입체 건축물의 공기전달음 소음 예측)

  • Yeon, Jun-Oh;Kim, Kyoung-Woo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.12
    • /
    • pp.1096-1102
    • /
    • 2013
  • The useful practical land shall be reserved when an artificial land covers the railway and road. However, the problem is that since the artificial land places directly on the top of noise sources likely on the railway and road there will arise the weak points, noise and vibration. On this study based on creating the artificial land on the top of a railway vehicle base and placing a tenement on that land, it was comprehended the noise influence from the railway car through the simulation. In order to secure the input value for the simulation, at first measured the noise condition of the railway station building and the railway vehicle base. The output value for the railway station building (place A) was around (53.6~57.6) dB(A), the equivalent continuous sound level for an hour, and for the railway station building (place B) it was around (63.7~68.9) dB. The maximum outdoor noise of the tenement on the artificial land was measured as 64.1 dB(A) under the fixed condition on the simulation modeling. The built purpose of placing the artificial land to prevent the noise influence from the railway met the expectation to be less influenced on the tenement. Rather, because of placing the artificial land the noise level on the lower space could be increased so there requires having a noise control.

Design and Implementation of an Indoor Particulate Matter and Noise Monitoring System (실내 미세먼지 및 소음 모니터링 시스템 설계 및 구현)

  • Cho, Hyuntae
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.17 no.1
    • /
    • pp.9-17
    • /
    • 2022
  • As the COVID-19 pandemic situation worsens, the time spent indoors increases, and the exposure to indoor environmental pollution such as indoor air pollution and noise also increases, causing problems such as deterioration of human health, stress, and discord between neighbors. This paper designs and implements a system that measures and monitors indoor air quality and noise, which are representative evaluation criteria of the indoor environment. The system proposed in this paper consists of a particulate matter measurement subsystem that measures and corrects the concentration of particulate matters to monitor indoor air quality, and a noise measurement subsystem that detects changes in sound and converts it to a sound pressure level. The concentration of indoor particulate matters is measured using a laser-based light scattering method, and an error caused by temperature and humidity is compensated in this paper. For indoor noise measurement, the voltage measured through a microphone is basically measured, Fourier transform is performed to classify it by frequency, and then A-weighting is performed to correct loudness equality. Then, the RMS value is obtained, high-frequency noise is removed by performing time-weighting, and then SPL is obtained. Finally, the equivalent noise level for 1 minute and 5 minutes are calculated to show the indoor noise level. In order to classify noise into direct impact sound and air transmission noise, a piezo vibration sensors is mounted to determine the presence or absence of direct impact transmitted through the wall. For performance evaluation, the error of particulate matter measurement is analyzed through TSI's AM510 instrument. and compare the noise error with CEM's noise measurement system.

Noise and Room Acoustic Conditions in a Tertiary Referral Hospital, Seoul National University Hospital

  • Cho, Wan-Ho;Jeong, Cheol-Ho;Chang, Ji-Ho;Lee, Seong-Hyun;Park, Moo Kyun;Suh, Myung-Whan;Han, Jae Joon
    • Journal of Audiology & Otology
    • /
    • v.23 no.2
    • /
    • pp.76-82
    • /
    • 2019
  • Background and Objectives: Noise levels and room acoustic parameters at a tertiary referral hospital, Seoul National University Hospital (SNUH) in Korea, are investigated. Materials and Methods: Through a questionnaire, acoustically problematic rooms are identified. Noise levels in emergency rooms (ERs) and intensive care units (ICUs) are measured over about three days. Acoustically critical and problematic rooms in the otolaryngology department are measured including examination rooms, operating rooms, nurse stations, receptions, and patient rooms. Results: The A-weighted equivalent noise level, LAeq, ranges from 54 to 56 dBA, which is at least 10 dB lower than the noise levels of 65 to 73 dBA measured in American ERs. In an ICU, the noise level for the first night was 66 dBA, which came down to 56 dBA for the next day. The noise levels during three different ear surgeries vary from 57 to 62 dBA, depending on the use of surgical drills and suctions. The noise levels in a patient room is found to be 47 dBA, while the nurse stations and the receptions have high noise levels up to 64 dBA. The reverberation times in an operation room, examination room, and single patient room are found to be below 0.6 s. Conclusions: At SNUH, the nurse stations and receptions were found to be quite noisy. The ERs were quieter than in the previous studies. The measured reverberation times seemed low enough but some other nurse stations and examination rooms were not satisfactory according to the questionnaire.

Noise and Room Acoustic Conditions in a Tertiary Referral Hospital, Seoul National University Hospital

  • Cho, Wan-Ho;Jeong, Cheol-Ho;Chang, Ji-Ho;Lee, Seong-Hyun;Park, Moo Kyun;Suh, Myung-Whan;Han, Jae Joon
    • Korean Journal of Audiology
    • /
    • v.23 no.2
    • /
    • pp.76-82
    • /
    • 2019
  • Background and Objectives: Noise levels and room acoustic parameters at a tertiary referral hospital, Seoul National University Hospital (SNUH) in Korea, are investigated. Materials and Methods: Through a questionnaire, acoustically problematic rooms are identified. Noise levels in emergency rooms (ERs) and intensive care units (ICUs) are measured over about three days. Acoustically critical and problematic rooms in the otolaryngology department are measured including examination rooms, operating rooms, nurse stations, receptions, and patient rooms. Results: The A-weighted equivalent noise level, LAeq, ranges from 54 to 56 dBA, which is at least 10 dB lower than the noise levels of 65 to 73 dBA measured in American ERs. In an ICU, the noise level for the first night was 66 dBA, which came down to 56 dBA for the next day. The noise levels during three different ear surgeries vary from 57 to 62 dBA, depending on the use of surgical drills and suctions. The noise levels in a patient room is found to be 47 dBA, while the nurse stations and the receptions have high noise levels up to 64 dBA. The reverberation times in an operation room, examination room, and single patient room are found to be below 0.6 s. Conclusions: At SNUH, the nurse stations and receptions were found to be quite noisy. The ERs were quieter than in the previous studies. The measured reverberation times seemed low enough but some other nurse stations and examination rooms were not satisfactory according to the questionnaire.

A Study on the Vibration Reduction of an Automobile Fuel Pump (자동차용 연료펌프의 진동 저감에 대한 연구)

  • Kim, Byeong Jin;Won, Hong In;Lee, Seong Won;Park, Sang Jun;Chung, Jintai
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.6
    • /
    • pp.520-526
    • /
    • 2013
  • This article presents the reduction of vibration generated by an automobile fuel pump. In order to analyze the vibration of the fuel pump, a simplified dynamic model is established, which is composed of a rigid rotor and a equivalent springs. The equivalent stiffnesses of the upper and lower assemblies are evaluated by the comparison of modal testing results and the finite element analysis. The stiffness for the oil film of the journal bearing is extracted by using Reynold's equation. In addition, the time responses for the vibration of the fuel pump are computed by using a commercial multi-body dynamics software, RecurDyn. Based on these results, some design suggestions are proposed to reduce the vibration of an automobile fuel pump.

Design of Friction Dampers for Seismic Response Control of a SDOF Building (단자유도 건물의 지진응답제어를 위한 마찰감쇠기 설계)

  • Min, Kyung-Won;Seong, Ji-Young
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.1
    • /
    • pp.22-28
    • /
    • 2010
  • Approximate analysis for a building installed with a friction damper is performed to get insight of its dynamic behavior. Energy balance equation is used to have a closed analytical form solution of dynamic magnification factor(DMF). It is found out that DMF is dependent on friction force ratio and resonance frequency. Approximation of DMF and equivalent damping ratio of a friction damper is proposed with such assumption that the building with a friction damper shows harmonic steady-state response and narrow banded response behavior near resonance frequency. Linear transfer function from input external force to output building displacement is suggested from the simplified DMF equation. Root mean square of a building displacement is derived under earthquake-like random excitation. Finally, design procedure of a friction damper is proposed by finding friction force corresponding to target control ratio. Numerical analysis is carried out to verify the proposed design procedure.

Rotordynamic Analysis of Balance Shafts (밸런스샤프트의 회전체역학 해석)

  • Nho, Jong-Won;Shin, Bum-Sik;Park, Heung-Joon;Choi, Yeon-Sun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.531-536
    • /
    • 2006
  • In four cylinder engine, the second order inertia force occurs due to the reciprocating parts of the cylinder. Because the magnitude of the inertia force is proportional to a square of the angular velocity of crank shaft, engine gets suffered from vibration excited by unbalanced inertia force in high speed. This vibration excited by the unbalanced inertia force can be canceled by applying a balance shaft. Balance shaft has one or more unbalance mass and rotates twice quickly than the crank shaft. In this paper, an unbalanced force caused by the rotating of unbalance mass of balance shafts was calculated. The directional equivalent stiffness and damping coefficients of the journal bearing of balance shafts was calculated. Equations of rotational vibration modes were derived using directional stiffness and damping coefficients. The dynamic stability of balance shafts was analyzed and evaluated for two type models using the equivalent stiffness and damping coefficients. An efficient procedure to he able to evaluate dynamic stability and design optimal balance shaft was proposed.

  • PDF

A Study on the Pyroelectric Effects of $LiTaO_3$ Single Crystal by Using the Dynamic Method (Dynamic 방법을 이용한$ LiTaO_3$ 단결정의 초전특성에 대한 연구)

  • 강성준;정양희
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.3
    • /
    • pp.454-460
    • /
    • 2003
  • The modulated frequency dependence on the pyroelectric properties of LiTaO$_3$ single crystal was investigated by the dynamic method. The pyroelectric coefficient of LiTaO$_3$ single crystal was 2.1${\times}$$10^{-8}$/$\textrm{cm}^2$ㆍK. and figure of merits for the responsivity and the detectivity were 1.31${\times}$$10^{-10}$Cㆍcm/J and 1.47${\times}$$10^{-8}$C\ulcornercm/J. respectively. The voltage responsivity corresponded with the pyroelectric voltage exhibited the highest value as about 165V /W at 4Hz and then was in inverse proportion to the frequency over 20Hz. The noise equivalent power and the detectivity at 4Hz were 8.4${\times}$$10^{-9}$ W/Hz$^{1}$2/ and 2.2${\times}$$10^{7}$ cmㆍHz$^{1}$2//W, respectively. Therefore, we could found that LiTaO$_3$ single crystal shows a excellent pyroelectric properties in low frequency region for the human body detection.tection.

Damping Device for Hydraulic Breaker: Impact and Noise Reduction (유압 브레이커 메인바디의 충격 및 소음 저감을 위한 완충 장치에 대한 연구)

  • Cho, Byung Jin;Han, Hoon Hee;Koo, Jeong Seo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.4
    • /
    • pp.113-122
    • /
    • 2018
  • A hydraulic breaker is an attachment of an excavator, and it crushes stones. Recently, research to reduce the impact and noise of breakers are ongoing. In this paper, a method to improve the upper, lower, and side dampers, which act as insulation for the attenuation of vibration during breaker operation, is studied through testing and simulation. To obtain the nonlinear material constants required for the simulation, the biaxial tensile test was performed with urethane, which is a material used for dampers. The existing parts and the improved parts were compared and evaluated using the LS-DYNA program. As a result, 50% of the equivalent stress was reduced in the bracket body of the hydraulic breaker, and the equivalent stress of the side damper was also decreased. We verified that the fatigue conditions were satisfied by performing a fatigue analysis.

Analysis and Estimation of Vibration Characteristics of a Reciprocal Compressor with Variable Rotating Speed (가변속 압축기의 진동특성 분석 및 예측)

  • Jung, Byung-Kyoo;Lee, Yun-Gon;Jeong, Weui-Bong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.3
    • /
    • pp.290-297
    • /
    • 2016
  • This paper deals with the vibration characteristics of a reciprocal compressor with variable rotating speed according to the change of operating frequencies. The equation of motion and exciting force of the equivalent compressor model were formulated, and the vibration responses at operating frequencies were predicted. The predicted results were compared with the measured results. Although the predicted results had little errors in operating condition, it represented good agreement in general. Especially, the natural frequencies obtained from the measurement were similar to those calculated by the eigenvalue problem of the equivalent model. The procedure and results in this paper can be utilized to the identification of the vibration characteristics of new compressor models.