• 제목/요약/키워드: Equivalent heat transfer rate

검색결과 26건 처리시간 0.022초

지중열교환기의 종류에 따른 열전달 성능에 관한 연구 (A study on the Heat Transfer Performance according to Ground Heat Exchanger Types)

  • 황석호;송두삼
    • KIEAE Journal
    • /
    • 제10권4호
    • /
    • pp.75-80
    • /
    • 2010
  • Generally, ground-source heat pump (GSHP) systems have a higher performance than conventional air-source systems. However, the major fault of GSHP systems is their expensive boring costs. Therefore, it is important issue that to reduce initial cost and ensure stability of system through accurate prediction of the heat extraction and injection rates of the ground heat exchanger. Conventional analysis methods employed by line source theory are used to predict heat transfer rate between ground heat exchanger and soil. Shape of ground heat exchanger was simplified by equivalent diameter model, but these methods do not accurately reflect the heat transfer characteristics according to the heat exchanger geometry. In this study, a numerical model that combines a user subroutine module that calculates circulation water conditions in the ground heat exchanger and FEFLOW program which can simulate heat/moisture transfer in the soil, is developed. Heat transfer performance was evaluated for 3 different types ground heat exchanger(U-tube, Double U-tube, Coaxial).

원관내 맥동유동의 열전달에 관한 실험적 연구 (An Experimental Study on Heat Transfer in the Pulsating Pipe Flow)

  • 박희용;김창기
    • 설비공학논문집
    • /
    • 제3권1호
    • /
    • pp.78-85
    • /
    • 1991
  • An experimental result for heat transfer of pulsating turbulent pipe flow was presented under the condition of fully developed dynamic regime and uniform wall heat flux. Experiments were performed at following conditions ; Inlet time-averaged Reynolds number varied from 5000 to 11000; The peak pressure fluctuation were 1.3, 2.3 and 3.5 percent of the mean pressure; Pulsating frequency ranged from 53 Hz to 320 Hz The measurements showed that the effect of pulsation on local heat transfer is greater at downstream, in which pulsating source exists, than upstream and the heat transfer rate, averaged over the pipe length, was higher or lower than in an equivalent non-pulsating flow according to the pulsating conditions. In addition, the significant change of heat transfer rate was observed in acoustically resonant conditions, when the pulsating frequency of the flow corresponded to the pipe natural frequency.

  • PDF

종횡비가 큰 사각 덕트내 난류 유동의 대류 열전달 증진 기술에 대한 연구 (TURBULENCE HEAT TRANSFER ENHANCEMENT TECHNIQUE FOR SQUARE DUCT WITH HIGH ASPECT RATIO)

  • 이찬용;신승원;정하승;박승호
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2010년 춘계학술대회논문집
    • /
    • pp.305-307
    • /
    • 2010
  • In this study, we develop a method to achieve heat transfer enhancement inside a square duct with high aspect ratio without changing any inner structures. Especially, a method to lower the possible maximum temperature is suggested if constant heat flux is provided to single surface of square duct. Knowing the fact that heat transfer rate is inversely proportional to flow area, we proposed tapered channel concept which uses narrower gap toward the flow exit where the maximum temperature is expected. To maintain equivalent power consumption, inlet section has been enlarged. To verify the proposed concept, experimental tests have been performed.

  • PDF

자동차 에어컨용 평행류 응축기의 성능평가 (Performance Evaluation of a Parallel Flow Condenser for Automotive Air Conditioners)

  • 장혁재;강병하
    • 설비공학논문집
    • /
    • 제15권4호
    • /
    • pp.247-253
    • /
    • 2003
  • The new shape of louver-fin has been applied to a parallel flow condenser to enhance air-side heat transfer rate lot an automotive air-conditioner R- l34a is employed as a refrigerant inside the flat tube of the condenser, This problem is of particular interest in reducing the geometric size of the automotive air conditioner The effect of air flow rate on pressure drop as well as heat transfer in air side are studied in detail. Comparison of the performance is also made with that of a conventional parallel flow condenser, which is available in the market. The results obtained indicate that the total pressure drop through the pre sent condenser is not changed, while the heat transfer rate is increased by 24% at high veto city of air flow, compared with those of the conventional condenser. The parallel flow condenser with a new shape of louver-fin could be reduced in size by 20% for the equivalent condenser capacity, compared with the conventional parallel flow condenser.

곡면에서의 열전달성능 향상을 위한 충돌제트의 최적설계 (Design Optimization of an Impingement Jet on Concave Surface for Enhancement of Heat Transfer Performance)

  • 허만웅;이기돈;김광용
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2011년 춘계학술대회논문집
    • /
    • pp.100-103
    • /
    • 2011
  • In the present work, a numerical study of fluid flow and heat transfer on the concave surface with impinging jet has been performed by solving three-dimensional Reynods-averaged Naver-Stokes(RANS) equations. The constant temperature condition was applied to the concave impingement surface. The inclination angle of jet nozzle and the distance between jet nozzles are chosen as design variables under equivalent mass flow rate of working fluid into cooling channel, and area averaged Nusselt number on concave impingement surface is set as the objective function. Thirteen training points are obtained by Latin Hypercube sampling method, and the PEA model is constructed by using the objective function values at the trainging points. And, the sequential quadratic programming is used to search for the optimal paint from the PBA model. Through the optimization, the optimal shape shows improved heat transfer rate as compared to the reference geometry.

  • PDF

자동차용 증발기 판 내의 증발 열전달 및 유동 특성에 관한 실험적 연구 (An Experimental Study on In-Plate Evaporation Heat Transfer and Flow Characteristics for Automobile)

  • 곽경민;주상우;정우열;김택근;김광일
    • 한국자동차공학회논문집
    • /
    • 제15권2호
    • /
    • pp.95-100
    • /
    • 2007
  • An experimental study was performed to evaluate the in-plate evaporation heat transfer and flow characteristics of a evaporator used in automobile. Two test-cores with different heat transfer area, bead-shape and bead-array were tested, A type and B type. For the heat transfer, Nusselt number for B type test-core reaches a value nearly equal to the one for A type test-core, in the whole range of equivalent Reynolds number. But, for the same mass flow rate of refrigerant, hA for B type test-core becomes higher with the increase of the mass quality of refrigerant than for A type test-core. In a flow visualization experiment, the wake zone of refrigerant circulating at u-turn position of plate is observed.

열전달 해석을 이용한 멤브레인형 LNG 화물창의 단열구조 성능비교 (Comparative Study on the Thermal Insulation of Membrane LNG CCS by Heat Transfer Analysis)

  • 황세윤;이장현
    • 한국전산구조공학회논문집
    • /
    • 제29권1호
    • /
    • pp.53-60
    • /
    • 2016
  • 본 연구는 NO96 화물창의 BOG(boil off gas), BOR(boil off rate)을 감소시키기 위한 노력으로 단열재료 및 단열층을 변화시켜서 개발된 NO96-GW, NO96-L03의 방열구조에 대해서 BOG, BOR 값을 계산하고 단열성능을 비교 평가하였다. 두가지의 변형된 NO96 모델을 기존의 NO96 방열과 단열층 및 단열재료의 차이점을 비교하고, 각각의 열저항 및 BOG/BOR 값의 비교 결과를 제시하였다. 열저항 값은 유한요소해석법을 이용하여 계산되었으며, 준정적 열평형 상태를 가정하여 열유속과 온도분포를 통하여 단열성능을 비교하였다. 계산에 사용된 화물창의 모든 재료물성치는 온도 의존값으로서 반영하여 $-163^{\circ}C$에서의 극저온 상태에서 특성을 반영되었다. 각 화물창의 BOG, BOR 계산은 국부 열전달 해석을 통해 방열판에서 발생하는 열유속을 계산하고, 등가모델을 적용하여 계산하는 과정으로 수행되었으며, 그 결과를 각 화물창의 단열성능을 비교 평가하기 위해서 검토하였다.

타원형 실린더에 의해 교란되어진 난류경계층에 관한 실험적 연구 (A Turbulent Boundary Layer Disturbed by an Elliptic Cylinder)

  • 최재호;조정원;이상준
    • 대한기계학회논문집B
    • /
    • 제25권11호
    • /
    • pp.1476-1482
    • /
    • 2001
  • Turbulent boundary layer over a flat plate was disturbed by installing an elliptic cylinder with an axis ratio of AR=2. For comparison, the same experiment was carried out for a circular cylinder having the same vertical height. The surface pressure and the heat transfer coefficient on the flat plate were measured with varying the gap distance between the elliptic cylinder and the flat plate. The mean velocity and the turbulent intensity profile of the streamwise velocity component were measured using a hot-wire anemometry. As a result, the flow structure and the local heat transfer rate were modified by the interaction between the cylinder wake and the turbulent boundary layer as a function of the critical gap ratio where the regular vortices start to shed. For the elliptic cylinder, the critical gap ratio is increased and the surface pressure on the flat plate is recovered rapidly at downstream location, compared with the equivalent circular cylinder. The maximum heat transfer rate occurs at the gap ratio of G/B = 0.5, where the flow interaction between the lower shear layer of the cylinder wake and the turbulent boundary layer is strong.

여러가지 열적 변수가 전폐형 유도전동기의 코일온도상승에 미치는 영향에 관한 연구 (The effects of various thermal parameters on coil temperature rise in TEFC induction motor)

  • 윤명근;하경표;이양수;고상근;한송엽
    • 대한기계학회논문집B
    • /
    • 제21권4호
    • /
    • pp.570-578
    • /
    • 1997
  • At design stage of new motor or when taking remedial action of old motor, a lot of information can be obtained from thermal parameters analysis. This study focused on the temperature rise of TEFC induction motor with respect to various thermal parameters. Frame heat transfer had the most important effect on coil temperature rise. But those of air gap and rotor fan had no effect. This fact shows fan action is more important than fin action in the case of rotor fan. Coil temperature can be more decreased by cooling near the heat sources than any other parts from the results of thermal conductivity and loss tests. Variation of cooling air flow rate and motor volume effects on coil temperature were also tested. These tests suggest that improvement of cooling fan performance is important in reducing the coil temperature rise. Thermal equivalent program was verified by comparison of some experimental results.

공동주택 외피의 열교영향을 고려한 상당열관류율 및 연간 에너지소비성능 평가 연구 (A study on the annual energy performance of apartment building with the equivalent U-value of envelope considering the effect of thermal bridges)

  • 김동수;윤종호;신우철;곽희열
    • KIEAE Journal
    • /
    • 제12권3호
    • /
    • pp.41-46
    • /
    • 2012
  • The building envelope is important specially for saving energy consumption of residential buildings. but Apartment houses in Korea commonly have inside insulation system which have constantly arisen thermal bridges, the risk of heat loss, as a necessity. This study aims to evaluate integrated insulation performance according to the different shapes of external walls, adjacent to windows. The thermal performance analysis was carried out by Equivalent U-value and using the three-dimensional heat transfer computer simulation (TRISCO-RADCON), under nine different cases of comparing among three each of different bases(current standard model, 30percent energy saving model and 60percent energy saving model). The heating and the cooling load were also compared between two cases (standard U-value and Equivalent U-value) of three each of different bases, using the Building energy simulation which is based on DOE-2.1 analysis. As results, it turns out that if the Equivalent U-value is considered on the envelope analysis, the heat flow loss will be increasing more than the standard U-value, and if heat insulation property of the residential building reinforced rather than current, the rate of influences on the thermal bridges would be extremely expanded. In addition, it is shown that annual heating loads of the apartment house with applied Equivalent U-value substantially increased by more than 15 percent compared to those with the existing U-value, but annual cooling loads were negligibly affected.