• Title/Summary/Keyword: Equivalent Stress

Search Result 1,116, Processing Time 0.023 seconds

Study on Improvement of Thermal Performance and Durability by Disk with Holes (타공 디스크에 의한 열적 성능 및 내구성 향상 연구)

  • Han, Moon-Sik;Cho, Jae-Ung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.1
    • /
    • pp.62-66
    • /
    • 2011
  • In this study, the thermal performance of disk can be compared with disk and disk with holes through numerical analysis. The capacity of thermal emission on general disk becomes more than on disk with holes at the distribution of temperature at first and the magnitude of equivalent stress on general disk becomes less than on disk with holes at the distribution of stress. The capacity of thermal emission or the magnitude of thermal deformation on disk with holes becomes less than that on general disk 30 minutes later. The disk with holes is worn less and more durable than general disk. The performance of cooling and braking force at disk and pad can be improved by installing the disk with holes.

Analysis of 3-D residual Stresses Due to Shape Memory Effects (형상기억효과에 따른 3차원 잔류응력의 해석)

  • 김홍건
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.8 no.5
    • /
    • pp.42-46
    • /
    • 1999
  • The strengthening of a metal matrix composite(MMC) by the shape memory effect(SME) of dispersed TiNi particles was theoretically studied. An analytical model was constructed for the prediction of the average residual stress(<$\delta$>m) on the base of the Eshelby's equivalent inclusion method. The analysis was performed on the TiNi particle/Al metal matrix composites with varying volume fractions and prestrains of the particle. The residual stress caused by the shape memory of predeformed fillers has been predicted to contribute significantly to the strengthening of this composite.

  • PDF

Structure Structural Durability Analysis on Bike Carrier Basket (자전거 짐받이에 대한 구조적 내구성 해석)

  • Cho, Jaeung;Han, Moonsik
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.1
    • /
    • pp.70-76
    • /
    • 2013
  • This study investigates structural durability through the analyses of stress, fatigue life and vibration damage at bike carrier basket. As model 2 has less stress and deformation than model 1 on static structural analysis, model 2 becomes more durable than model 1. Among the cases of nonuniform fatigue loads, 'SAE bracket history' with the severest change of load becomes most unstable but 'Sample history' becomes most stable. The amplitude deformations become highest at maximum response frequency of 2400Hz in cases of models 1 and 2. As the values of maximum equivalent stresses become within the allowable material stresses at two holes at the upper parts on models 1 and 2, these models become safe. The structural result of this study can be effectively utilized with the design of bike carrier basket by investigating prevention and durability against fatigue or vibration damage.

Durability Analysis by Shape of Brake Disk Structure (브레이크 디스크 구조 형상별 내구성 해석)

  • Han, Moonsik;Cho, Jaeung
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.1
    • /
    • pp.36-44
    • /
    • 2013
  • This study investigates life, damage and durability through the analyses of fatigue load and vibration on disk brake models of A, B and C. Maximum equivalent stress is happened at the inside of disk brake on these models. As there are A, B and C models by order of life, model A has the most stable strength on fatigue analysis, The deformations at 3 kinds of models become nearly same on natural frequency analysis. The maximum total deformation and equivalent stress is shown at 1617Hz by harmonic vibration analysis on these models. As there are A, B and C models by order of deformation and stress, model A becomes lowest and safest. This study result can be effectively utilized with the design of brake disk in order to improve durability and prevention against its fatigue damage and vibration.

Structural Strength Analysis of Shock Absorber (쇽업소버의 구조강도 해석)

  • Cho, Jae-Ung;Han, Moon-Sik
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.9 no.2
    • /
    • pp.53-59
    • /
    • 2010
  • Stress analysis and fatigue life on shock absorber are investigated in this study. The lower part of spring is shown with the maximum equivalent stress and displacement of 153.49MPa and 26.151mm. The rear part is also shown with the number of fatigue life less than $6.8241{\times}10^5$. And the middle part of spring is shown with the minimum safety factor of 0.94592. The designed modeling suspension in this study has no possibility with resonance. As the result of this study is applied by the chassis of automobile, the prevention on fatigue fracture and the durability is predicted.

Strength Evaluation of Aluminum Alloy Bolt by Nano-Indentation Hardness Test

  • KUBOTA Yoshihiro;NAKAMURA Tamotsu;KOBAYASHI Mitsuo;FUKUDA Katsumi
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10b
    • /
    • pp.123-126
    • /
    • 2003
  • A high strength aluminum alloy bolt (A7050, T7 temper treatment) has been developed by the authors. The bolt has a small grain size in the whole area of the bolt because of the large equivalent strain followed by thermo-mechanical treatment. As the bolt made of A 7050 has a risk of stress corrosion cracking, each grain should be strengthened the grain inside than the grain boundary in order to improve the stress corrosion cracking resistance. It has been confirmed that the nano-indentation hardness at each grain inside increased with the increasing equivalent strain by thermo-mechanical treatment processing.

  • PDF

Development of Electrical and Oil Heater for Energy Saving (에너지 절감형 전기 유류 겸용 온풍기 개발)

  • Chung, Sung-Won;Kim, Dong-Keon;Gong, Sang-Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.5
    • /
    • pp.38-43
    • /
    • 2011
  • This study was carried out to evaluate the structural stability of hybrid type fan heater. The evaluation of structural safety of hybrid fan heater was conducted by using Ansys Workbench and CFX-11 under the design condition. The hybrid fan heater was operated by heat transfer for heat source supplied from electric heater and combustion gas. According to result of structural analysis, the maximum equivalent stress of hybrid fan heater was 150MPa when the temperature of heat transfer fluids was $150^{\circ}C$. It was found that the hybrid fan was structurally safe because the value of maximum equivalent stress was smaller than that of yield stress of the material.

Welding deformation analysis based on improved equivalent strain method to cover external constraint during cooling stage

  • Kim, Tae-Jun;Jang, Beom-Seon;Kang, Sung-Wook
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.5
    • /
    • pp.805-816
    • /
    • 2015
  • In the present study, external restraints imposed normal to the plate during the cooling stage were determined to be effective for reduction of the angular distortion of butt-welded or fillet-welded plate. A welding analysis model under external force during the cooling stage was idealized as a prismatic member subjected to pure bending. The external restraint was represented by vertical force on both sides of the work piece and bending stress forms in the transverse direction. The additional bending stress distribution across the plate thickness was reflected in the improved inherent strain model, and a set of inherent strain charts with different levels of bending stress were newly calculated. From an elastic linear FE analysis using the inherent strain values taken from the chart and comparing them with those from a 3D thermal elasto-plastic FE analysis, welding deformation can be calculated.

Thermal Analysis According to Material of Manifold (매니폴드 재질에 따른 열 해석)

  • Cho, Jae-Ung;Han, Moon-Sik
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.8 no.3
    • /
    • pp.33-37
    • /
    • 2009
  • Manifold could apply stainless steel with light weight and durability to improve fuel efficiency at automotive industry. This study is analyzed and compared by heat transfer and deformation according to the materials of cast iron and stainless steel. The heat transfer at manifold of cast iron at the distribution of heat temperature is more than that of stainless steel. But the value of maximum heat deformation in case of stainless steel is 1.5 times as great as that in case of cast iron. The value of maximum heat equivalent stress in case of stainless steel is 2.7 times as great as that in case of cast iron. This maximum stress at manifold is shown at the part assembled with engine body.

  • PDF

A Study on Nonlinear Analysis of Reinforced Concrete Structures (철근(鐵筋)콘크리트 구조물(構造物)의 비선형(非線型) 해석(解析)에 관한 연구(硏究))

  • Chang, Dong Il;Kwak, Kae Hwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.7 no.2
    • /
    • pp.69-77
    • /
    • 1987
  • A finite element method has been developed to study the material nonlinear analysis of reinforced concrte structures. Concrete behavior under the biaxial state of stress is represented by a nonlinear constitutive relationship which incorporates tensile cracking, tensile stiffening effect between cracks and the strain-softening phenomenon beyond the maximum compressive strength. The concrete model used is based upon nonlinear elasticity by assuming concrete to be an orthotropic material and modeled as equivalent uniaxial stress-strain constitutive relationship using equivalent uniaxial strain. The streel reinforcement is assumed to be in a uniaxial stress state and is modeled as a bilinear, elasto-plastic material with strain hardening approximating the Bauschinger effect. In plane stress state, R.C. beams is modeled as a quadratic element that has two degrees of freedom in each node. And this results of finite element analysis are compared with the experimential results of midspan deflection, stresses and strains.

  • PDF