• Title/Summary/Keyword: Equivalent Shear Modulus

Search Result 53, Processing Time 0.024 seconds

Experimental Study on Characteristics of Low Hardness Rubber Bearing (저경도 고무받침의 특성에 관한 실험적 연구)

  • 정길영;하동호;박건록;권형오
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.6 no.4
    • /
    • pp.39-49
    • /
    • 2002
  • In this paper, the characteristics of RB(rubber bearing) were studied by various prototype tests on RB with low hardness rubber. The characteristics of RB were tested on displacements, repeated cycles, frequencies, vertical pressures, temperature, vertical stiffness and the capability of shear deformation. The prototype test showed that the displacement and vertical pressures were the most governing factors influencing on characteristics of RB. The effective stiffness and equivalent damping of RB showed small increment in high frequency range. After the repeated cyclic test with 50's cycles, the effective stiffness and equivalent damping of RB were almost constant compared with those of the 1st cycles due to low hysteretic damping. The shear modulus of RB was reduced after large deformation, and this value of RB was partly recovered after 40 days. Finally, the shear failure test of RB was conducted, the prototype was failed over 490% of shear strain, and real size RB was failed over 430% of shear strain.

Effect of Loading Frequency Dependent Soil Behavior on Seismic Site Effect (하중의 주파수에 의하여 지배받은 흙의 동적 거동이 부지증폭현상에 미치는 영향)

  • Park Du-Hee;Hashash Y.M.A;Lee Hyun-Woo;Kim Jae-Yoen
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.3
    • /
    • pp.23-35
    • /
    • 2006
  • Equivalent linear analysis is widely used in estimating local seismic site effects. The soil behavior in the analysis is often assumed to be rate-independent and is not influenced by the seismic loading frequency. Laboratory results, however, indicate that cohesive soil behavior is greatly influenced by the loading frequency. A new equivalent linear analysis method that accounts for the loading frequency dependent soil behavior is developed and used to perform a series of one dimensional site response analyses. Results indicate that while frequency dependent shear modulus has limited influence on computed site response, frequency dependent soil damping greatly filters out high frequency components of the ground motion and thus results in lower response.

Application of the Laplace transformation for the analysis of viscoelastic composite laminates based on equivalent single-layer theories

  • Sy, Ngoc Nguyen;Lee, Jaehun;Cho, Maenghyo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.13 no.4
    • /
    • pp.458-467
    • /
    • 2012
  • In this study, the linear viscoelastic response of a rectangular laminated plate is investigated. The viscoelastic properties, expressed by two basic spring-dashpot models, that is Kelvin and Maxwell models, is assumed in the range to investigate the influence of viscoelastic coefficients to mechanical behavior. In the present study, viscoelastic responses are performed for two popular equivalent single-layered theories, such as the first-order shear deformation theory (FSDT) and third-order shear deformation theory (TSDT). Compliance and relaxation modulus of time-dependent viscoelastic behavior are approximately determined by Prony series. The constitutive equation for linear viscoelastic material as the Boltzmann superposition integral equation is simplified by the convolution theorem of Laplace transformation to avoid direct time integration as well as to improve both accuracy and computational efficiency. The viscoelastic responses of composite laminates in the real time domain are obtained by applying the inverse Laplace transformation. The numerical results of viscoelastic phenomena such as creep, cyclic creep and recovery creep are presented.

Reinforcing effect of CFRP bar on concrete splitting behavior of headed stud shear connectors

  • Huawen Ye;Wenchao Wang;Ao Huang;Zhengyuan Wang
    • Steel and Composite Structures
    • /
    • v.48 no.2
    • /
    • pp.131-143
    • /
    • 2023
  • The CFRP bar was used to achieve more ductile and durable headed-stud shear connectors in composite components. Three series of push-out tests were firstly conducted, including specimens reinforced with pure steel fibers, steel and CFRP bars. The distributed stress was measured by the commercial PPP-BOTDA (Pre-Pump-Pulse Brillouin optical time domain analysis) optical fiber sensor with high spatial resolution. A series of numerical analyses using non-linear FE models were also made to study the shear force transfer mechanism and crack response based on the test results. Test results show that the CFRP bar increases the shear strength and stiffness of the large diameter headed-stud shear connection, and it has equivalent reinforcing effects on the stud shear capacity as the commonly used steel bar. The embedded CFRP bar can also largely improve the shear force transfer mechanism and decrease the tensile stress in the transverse direction. The parametric study shows that low content steel fibers could delay the crack initiation of slab around the large diameter stud, and the CFRP bar with normal elastic modulus and the standard reinforcement ratio has good resistance to splitting crack growth in headed stud shear connectors.

Nonlinear vibration properties of a zigzag single-walled carbon nanotube embedded in a polymer matrix

  • Besseghier, Abderrahmane;Heireche, Houari;Bousahla, Abdelmoumen Anis;Tounsi, Abdelouahed;Benzair, Abdelnour
    • Advances in nano research
    • /
    • v.3 no.1
    • /
    • pp.29-37
    • /
    • 2015
  • In the current study, the nonlinear vibration properties of an embedded zigzag single-walled carbon nanotube (SWCNT) are investigated. Winkler-type model is used to simulate the interaction of the zigzag SWCNTs with a surrounding elastic medium. The relation between deflection amplitudes and resonant frequencies of the SWCNT is derived through harmonic balance method. The equivalent Young's modulus and shear modulus for zigzag SWCNT are derived using an energy-equivalent model. The amplitude - frequency curves for large-amplitude vibrations are graphically illustrated. The simulation results show that the chirality of zigzag carbon nanolube as well as surrounding elastic medium play more important roles in the nonlinear vibration of the single-walled carbon nanotubes.

A Determination of Design Parameters for Application of Composite Coil Spring in a Passenger Vehicle (승용차 복합재 코일스프링 개발을 위한 설계변수들의 결정)

  • Oh, Sung-Ha;Choi, Bok-Lok
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.1
    • /
    • pp.77-83
    • /
    • 2013
  • This paper presents the feasibility on the application of composite coil spring, which has great interest in the automobile industry. In order to obtain much lighter weight of the composite spring, it will be necessary to optimize the design variables such as fiber angles and diameter of coil, etc. First of all, mechanical properties were measured to consider the effects of FVR and ply angles for carbon fiber composite material. And the shear modulus with respect to ply angles were derived based on twisting angles calculated by torsional beam model. Next we determined the design parameters of composite coil spring, which has equivalent spring rate to the steel coil spring. In order to assess the proposed method, finite element model of the composite spring was developed and analysed to obtain the spring constant. The results showed that static spring rate of the composite spring was in a good agreement with that of steel spring.

Identifying Strain Associated with Damping Ratio from Tosional Test Using a Combined Damping Model (복합감쇠모델을 이용한 비틂 시험기로 얻은 감쇠비에 상응하는 변형률 산정)

  • Bae, Yoon-Shin
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.12 no.1
    • /
    • pp.43-55
    • /
    • 2008
  • The complexity of determining strain associated with shear modulus and damping ratio in torsional tests has been resolved by means of several approaches. Particularly, the modified equivalent radius approach is adequate to when generating the plots of equivalent radius ratio versus strain more effectively over any range of strains in resonant column and torsional shear (RC/TS) tests. The modified equivalent radius approach was applied for hyperbolic, modified hyperbolic, and Ramberg-Osgood models in evaluating damping ratio. Results showed that using a single value of equivalent radius ratio based on conventional equivalent radius approach is not appropriate. A new model was developed to consider the soil damping behavior at small strains as well as hysteretic damping and it was attempted to determine adjustments are required in evaluating strain associated damping when combining the two damping components.

A new four-unknown equivalent single layer refined plate model for buckling analysis of functionally graded rectangular plates

  • Ibrahim Klouche Djedid;Sihame Ait Yahia;Kada Draiche;Emrah Madenci;Kouider Halim Benrahou;Abdelouahed Tounsi
    • Structural Engineering and Mechanics
    • /
    • v.90 no.5
    • /
    • pp.517-530
    • /
    • 2024
  • This paper presents a new four-unknown equivalent single layer (ESL) refined plate theory for the buckling analysis of functionally graded (FG) rectangular plates with all simply supported edges and subjected to in-plane mechanical loading conditions. The present model accounts for a parabolic variation of transverse shear stress over the thickness, and accommodates correctly the zero shear stress conditions on the top and bottom surfaces of the plate. The material properties are supposed to vary smoothly in the thickness direction through the rules of mixture named power-law gradation. The governing equilibrium equations are formulated based on the total potential energy principle and solved for simply supported boundary conditions by implementing the Navier's method. A numerical result on elastic buckling using the current theory was computed and compared with those published in the literature to examine the accuracy of the proposed analytical solution. The effects of changing power-law exponent, aspect ratio, thickness ratio and modulus ratio on the critical buckling load of FG plates under different in-plane loading conditions are investigated in detail. Moreover, it was found that the geometric parameters and power-law exponent play significant influences on the buckling behavior of the FG plates.

Evaluation of Accuracy of Modified Equivalent Linear Method (수정된 등가선형해석기법의 정확성 평가)

  • Jeong, Chang-Gyun;Kwak, Dong-Yeop;Park, Duhee;Kim, Kwangkyun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.6
    • /
    • pp.5-20
    • /
    • 2010
  • One-dimensional equivalent linear site response analysis is widely used in practice due to its simplicity, requiring only few input parameters, and low computational cost. The main limitation of the procedure is that it is essentially a linear method, in which the time dependent change in the soil properties cannot be modeled and constant values of shear modulus and damping is used throughout the duration of the analysis. Various forms of modified equivalent linear analyses have been developed to enhance the accuracy of the equivalent linear method by incorporating the dependence of the shear strain with the loading frequency. The methods are identical in that it uses the shear strain Fourier spectrum as the backbone of the analysis, but differ in the method in which the strain Fourier spectrum is smoothed. This study used two domestically measured soil profiles to perform a series of nonlinear, equivalent linear, and modified equivalent linear site response analyses to verify the accuracy of two modified procedures. The results of the analyses indicate that the modified equivalent linear analysis can highly overestimate the amplification of the high frequency components of the ground motion. The degree of overestimation is dependent on the characteristics of the input ground motion. Use of a motion rich in high frequency contents can result in unrealistic response.

Seismic equivalent linear response of a structure by considering soil-structure interaction: Analytical and numerical analysis

  • Maroua Lagaguine;Badreddine Sbartai
    • Structural Engineering and Mechanics
    • /
    • v.87 no.2
    • /
    • pp.173-189
    • /
    • 2023
  • For a given structural geometry, the stiffness and damping parameters of the soil and the dynamic response of the structure may change in the face of an equivalent linear soil behavior caused by a strong earthquake. Therefore, the influence of equivalent linear soil behavior on the impedance functions form and the seismic response of the soil-structure system has been investigated. Through the substructure method, the seismic response of the selected structure was obtained by an analytical formulation based on the dynamic equilibrium of the soil-structure system modeled by an analog model with three degrees of freedom. Also, the dynamic response of the soil-structure system for a nonlinear soil behavior and for the two types of impedance function forms was also analyzed by 2D finite element modeling using ABAQUS software. The numerical results were compared with those of the analytical solution. After the investigation, the effect of soil nonlinearity clearly showed the critical role of soil stiffness loss under strong shaking, which is more complex than the linear elastic soil behavior, where the energy dissipation depends on the seismic motion amplitude and its frequency, the impedance function types, the shear modulus reduction and the damping increase. Excellent agreement between finite element analysis and analytical results has been obtained due to the reasonable representation of the model.