• Title/Summary/Keyword: Equivalent SDOF

Search Result 76, Processing Time 0.02 seconds

Soil interaction effects on the performance of compliant liquid column damper for seismic vibration control of short period structures

  • Ghosh, Ratan Kumar;Ghosh, Aparna Dey
    • Structural Engineering and Mechanics
    • /
    • v.28 no.1
    • /
    • pp.89-105
    • /
    • 2008
  • The paper presents a study on the effects of soil-structure-interaction (SSI) on the performance of the compliant liquid column damper (CLCD) for the seismic vibration control of short period structures. The frequency-domain formulation for the input-output relation of a flexible-base structure with CLCD has been derived. The superstructure has been modeled as a linear, single degreeof-freedom (SDOF) system. The foundation has been considered to be attached to the underlying soil medium through linear springs and viscous dashpots, the properties of which have been represented by complex valued impedance functions. By using a standard equivalent linearization technique, the nonlinear orifice damping of the CLCD has been replaced by equivalent linear viscous damping. A numerical stochastic study has been carried out to study the functioning of the CLCD for varying degrees of SSI. Comparison of the damper performance when it is tuned to the fixed-base structural frequency and when tuned to the flexible-base structural frequency has been made. The effects of SSI on the optimal value of the orifice damping coefficient of the damper has also been studied. A more convenient approach for designing the damper while considering SSI, by using an established model of a replacement oscillator for the structure-soil system has also been presented. Finally, a simulation study, using a recorded accelerogram, has been carried out on the CLCD performance for the flexible-base structure.

Analytical Study on Effects of Gravity Load on Blast Resistance of Steel Compressive Members (강재압축재의 방폭성능에 대한 중력하중효과의 해석적 연구)

  • Lee, Kyungkoo;Lee, Moon Chang
    • Journal of Korean Society of Steel Construction
    • /
    • v.27 no.3
    • /
    • pp.273-280
    • /
    • 2015
  • Equivalent Single-Degree-of-Freedom(SDOF) analysis, most used for blast-resistant design, does not consider the effects of gravity load on the performance evaluation of blast resistance of structural members. However, since there exists gravity load on columns and walls of structures, the blast resistance of structural members should be evaluated considering gravity load on them. In this paper, an approach to reflect the gravity load effects on the equivalent SDOF analysis for dynamic blast response of structural members is proposed. For this purpose, the parametric studies using finite element analysis were performed by varying maximum blast load, blast load duration, and gravity load with constant the resistance and natural period of a structural member. The finite element analysis results were compared with the equivalent SDOF analysis results and the blast response of the structure member was estimated by conducting finite element analyses for various gravity loads. Finally, a graphical solution for ductility of a structural member with the variables of blast load, gravity load and structural member properties was developed. The blast response of structural members under gravity load could be estimated reasonably and easily by using this graphical solution.

Equivalent period and damping of SDOF systems for spectral response of the Japanese highway bridges code

  • Sanchez-Flores, Fernando;Igarashi, Akira
    • Earthquakes and Structures
    • /
    • v.2 no.4
    • /
    • pp.377-396
    • /
    • 2011
  • In seismic design and structural assessment using the displacement-based approach, real structures are simplified into equivalent single-degree-of-freedom systems with equivalent properties, namely period and damping. In this work, equations for the optimal pair of equivalent properties are derived using statistical procedures on equivalent linearization and defined in terms of the ductility ratio and initial period of vibration. The modified Clough hysteretic model and 30 artificial accelerograms, compatible with the acceleration spectra for firm and soft soils, defined by the Japanese Design Specifications for Highway Bridges are used in the analysis. The results obtained with the proposed equations are verified and their limitations are discussed.

Response transformation factors for deterministic-based and reliability-based seismic design

  • Bojorquez, Eden;Bojorquez, Juan;Ruiz, Sonia E.;Reyes-Salazar, Alfredo;Velazquez-Dimas, Juan
    • Structural Engineering and Mechanics
    • /
    • v.46 no.6
    • /
    • pp.755-773
    • /
    • 2013
  • One of the main requirements of the seismic design codes must be its easy application by structural engineers. The use of practically-applicable models or simplified models as single-degree-of-freedom (SDOF) systems is a good alternative to achieve this condition. In this study, deterministic and probabilistic response transformation factors are obtained to evaluate the response in terms of maximum ductility and maximum interstory drifts of multi-degree-of-freedom (MDOF) systems based on the response of equivalent SDOF systems. For this aim, five steel frames designed with the Mexican City Building Code (MCBC) as well as their corresponding equivalent SDOF systems (which represent the characteristics of the frames) are analyzed. Both structural systems are subjected to ground motions records. For the MDOF and the simplified systems, incremental dynamic analyses IDAs are developed in first place, then, structural demand hazard curves are obtained. The ratio between the IDAs curves corresponding to the MDOF systems and the curves corresponding to the simplified models are used to obtain deterministic response transformation factors. On the other hand, demand hazard curves are used to calculate probabilistic response transformation factors. It was found that both approaches give place to similar results.

Experimental Study on Equivalent Linear System for Rotational friction Damper (회전마찰감쇠기의 등가선형시스템에 관한 실험적 연구)

  • 김형섭;박지훈;민경원;이상현;이명규
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.10a
    • /
    • pp.296-303
    • /
    • 2004
  • In this study, equivalent linear damping and stiffness of a single-degree-of-freedom (SDOF) structure with a rotational friction damper are estimated using the result of experiments and compared with those obtained from non-linear time history analyses. First, the transfer function of the test model is constructed and then the equivalent stiffness and damping are calculated, using the half-power bandwidth (HPB) method. For comparative study, those properties are estimated based on stochastic theory in the time domain. Both equivalent linear systems identified from experiments and numerical analyses correspond well. Further, it is observed that there exists an optimal clamping force on the rotational friction damper from estimated equivalent damping.

  • PDF

Evaluation of N2 method for damage estimation of MDOF systems

  • Yaghmaei-Sabegh, Saman;Zafarvand, Sadaf;Makaremi, Sahar
    • Earthquakes and Structures
    • /
    • v.14 no.2
    • /
    • pp.155-165
    • /
    • 2018
  • Methods based on nonlinear static analysis as simple tools could be used for the seismic analysis and assessment of structures. In the present study, capability of the N2 method as a well-known nonlinear analysis procedure examines for the estimation of the damage index of multi-storey reinforced concrete frames. In the implemented framework, equivalent single-degree-of-freedom (SDOF) models are utilized for the global damage estimation of multi-degree-of-freedom (MDOF) systems. This method does not require high computational analysis and subsequently decreases the required time of seismic design and assessment process. To develop the methodology, RC frames with period range from 0.4 to 2.0 s under 40 records are studied. The effectiveness of proposed technique is evaluated through numerical study under near- and far-field earthquake ground motions. Finally, the results of developed models are compared with two other simplified schemes along with nonlinear time history analysis results of multi-storey frames. To improve the accuracy of damage estimation, a modified relation is presented based on the N2 method results for near- and far-field earthquakes.

An Evolution of Nonlinear Dynamic Response of an Unreinforced Masonry Structure (비보강 조적조의 비선형 동적 거동의 전개)

  • Kim, Nam-Hee
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.3 s.49
    • /
    • pp.77-84
    • /
    • 2006
  • Unlike homogeneous material structure, the behavior of masonry structure is not perfectly elastic even in the range of small deformations because it is a non-homogeneous and anisotropic composite structural material, consisting of masonry units, mortar, and grout. This paper proposes a simplified way of investigating the evolution of the deformation and damage of the structure subjected to a series of successive ground motions with varying shaking. Especially, the most simple but useful algorithm of Fast Fourier Transformation (FFT) has been adopted to investigate the evolution of the deformation and damage of the structure tested on the shaking table. Moreover, the development of a hi-linear curve for an equivalent SDOF system which is obtained by exploiting the frequency and stiffness relationship was discussed. Finally, some important findings related to inelastic properties of the URM are summarized.

A Study on the Resilience-Based Performance Evaluation Method of Structures and Their Application Plan (구조물의 회복탄력성 기반 성능평가법에 대한 고찰 및 적용 방안에 관한 연구)

  • Kim, Yu-Seong;Kang, Joo-Won;Lee, Joon-Ho
    • Journal of Korean Association for Spatial Structures
    • /
    • v.20 no.4
    • /
    • pp.159-167
    • /
    • 2020
  • The resilience performance evaluation method of a structure can evaluate the ability to recover after an earthquake disaster, and this study deals with the consideration and introduction of the resilience performance evaluation method. The resilience evaluation method can be expressed as a quantified number by constructing a loss estimation model and a recovery evaluation model. The recovery evaluation model should consider downtime in addition to the repair time, and the loss estimation model should consider not only direct loss to structures and non-structures, but also indirect loss due to functional loss of the building. In addition, to build a loss estimation model, the structure should be simplified to perform an efficient analysis. Therefore, in this study, the equivalent terminal induction system proposed cantilever-type and rahmen-type SDOF, and it is evaluated somewhat conservatively compared to the example structure, and it is judged that there is a need to improve the hysteresis characteristics by applying the stiffness reduction factor of the SDOF model.

Effect of Equivalent SDOF Methods for Seismic Evaluation of Bridge Structures (교량구조물의 지진응답에 대한 등가단자유도 방법의 영향)

  • Nam, Wang-Hyun;Song, Jong-Keol;Chung, Yeong-Hwa
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2005.03a
    • /
    • pp.316-323
    • /
    • 2005
  • The capacity spectrum method (CSM) can be used for the evaluation of inelastic maximum response of structures and has been recently used in the seismic design using the incorporation of pushover analysis and response spectrum method. To efficiently evaluate seismic performance of multi-degree-of freedom (MDOF) bridge structures, it is important that the equivalent response of MDOF bridge structures be calculated. In this study to calculate the equivalent response of MDOF system, equivalent responses are obtained by the using Song method, N2 method and Calvi method. Also, these are applied the CSM method and seismic performance of bridge according to the ESDOF method are compared and evaluated.

  • PDF

A new practical equivalent linear model for estimating seismic hysteretic energy demand of bilinear systems

  • Samimifar, Maryam;Massumi, Ali;Moghadam, Abdolreza S.
    • Structural Engineering and Mechanics
    • /
    • v.70 no.3
    • /
    • pp.289-301
    • /
    • 2019
  • Hysteretic energy is defined as energy dissipated through inelastic deformations during a ground motion by the system. It includes frequency content and duration of ground motion as two remarkable parameters, while these characteristics are not seen in displacement spectrum. Since maximum displacement individually cannot be the appropriate criterion for damage assessment, hysteretic energy has been evaluated in this research as a more comprehensive seismic demand parameter. An innovative methodology has been proposed to establish a new equivalent linear model to estimate hysteretic energy spectrum for bilinear SDOF models under two different sets of earthquake excitations. Error minimization has been defined in the space of equivalent linearization concept, which resulted in equivalent damping and equivalent period as representative parameters of the linear model. Nonlinear regression analysis was carried out for predicting these equivalent parameter as a function of ductility. The results also indicate differences between seismic demand characteristics of far-field and near-field ground motions, which are not identified by most of previous equations presented for predicting seismic energy. The main advantage of the proposed model is its independency on parameters related to earthquake and response characteristics, which has led to more efficiency as well as simplicity. The capability of providing a practical energy based seismic performance evaluation is another outstanding feature of the proposed model.