• Title/Summary/Keyword: Equivalent Mechanical Model

Search Result 498, Processing Time 0.026 seconds

Stability of perforated nanobeams incorporating surface energy effects

  • Almitani, Khalid H.;Abdelrahman, Alaa A.;Eltaher, Mohamed A.
    • Steel and Composite Structures
    • /
    • v.35 no.4
    • /
    • pp.555-566
    • /
    • 2020
  • This paper aims to present an analytical methodology to investigate influences of nanoscale and surface energy on buckling stability behavior of perforated nanobeam structural element, for the first time. The surface energy effect is exploited to consider the free energy on the surface of nanobeam by using Gurtin-Murdoch surface elasticity theory. Thin and thick beams are considered by using both classical beam of Euler and first order shear deformation of Timoshenko theories, respectively. Equivalent geometrical constant of regularly squared perforated beam are presented in simplified form. Problem formulation of nanostructure beam including surface energies is derived in detail. Explicit analytical solution for nanoscale beams are developed for both beam theories to evaluate the surface stress effects and size-dependent nanoscale on the critical buckling loads. The closed form solution is confirmed and proven by comparing the obtained results with previous works. Parametric studies are achieved to demonstrate impacts of beam filling ratio, the number of hole rows, surface material characteristics, beam slenderness ratio, boundary conditions as well as loading conditions on the non-classical buckling of perforated nanobeams in incidence of surface effects. It is found that, the surface residual stress has more significant effect on the critical buckling loads with the corresponding effect of the surface elasticity. The proposed model can be used as benchmarks in designing, analysis and manufacturing of perforated nanobeams.

Nanotechnology, smartness and orthotropic nonhomogeneous elastic medium effects on buckling of piezoelectric pipes

  • Mosharrafian, Farhad;Kolahchi, Reza
    • Structural Engineering and Mechanics
    • /
    • v.58 no.5
    • /
    • pp.931-947
    • /
    • 2016
  • The effects of nanotechnology and smartness on the buckling reduction of pipes are the main contributions of present work. For this ends, the pipe is simulated with classical piezoelectric polymeric cylindrical shell reinforced by armchair double walled boron nitride nanotubes (DWBNNTs), The structure is subjected to combined electro-thermo-mechanical loads. The surrounding elastic foundation is modeled with a novel model namely as orthotropic nonhomogeneous Pasternak medium. Using representative volume element (RVE) based on micromechanical modeling, mechanical, electrical and thermal characteristics of the equivalent composite are determined. Employing nonlinear strains-displacements and stress-strain relations as well as the charge equation for coupling of electrical and mechanical fields, the governing equations are derived based on Hamilton's principal. Based on differential quadrature method (DQM), the buckling load of pipe is calculated. The influences of electrical and thermal loads, geometrical parameters of shell, elastic foundation, orientation angle and volume percent of DWBNNTs in polymer are investigated on the buckling of pipe. Results showed that the generated ${\Phi}$ improved sensor and actuator applications in several process industries, because it increases the stability of structure. Furthermore, using nanotechnology in reinforcing the pipe, the buckling load of structure increases.

Analysis of Flow Characteristics of Multiple Filter System (다중 필터 시스템의 유동특성 해석)

  • In-Soo Son;Mi-Young Seo;Jun-Ho Kim;Jin-Soek Yu
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.4_2
    • /
    • pp.615-621
    • /
    • 2023
  • In this study, flow analysis of single, double, and triple filter systems of cylindrical structures was performed to analyze the flow characteristics of each filter. As a result of the flow analysis of the filter system, the number of filters and the pressure drop rate tend to be proportional to each other. It was found that the area passing through the inside of the filter had almost the same pressure. The maximum pressure drop rate of the triple filter system was about 14.9% for the forward-flow and about 12.4% for the reverse-flow. It was determined that the performance of the filter was stable within 20% of the allowable pressure drop rate of the filter system, which is the standard presented to the Korea Water Technology Certification Institute(KWTCI). In the future, a study on the decompression characteristics of the filter system according to the effect of the arrangement interval and filter density of the triple filter will be conducted.

Buckling Analysis of Laminated Composite Trapezoidal Corrugated Plates (적층 복합재료 사다리꼴 주름판의 좌굴해석)

  • Park, Kyung-Jo;Kim, Young-Wann
    • Composites Research
    • /
    • v.32 no.4
    • /
    • pp.185-190
    • /
    • 2019
  • This work investigates the elastic buckling characteristics of laminated composite trapezoidal corrugated plates with simply supported edges using the analytical method. In the analysis, three types of in-plane loading conditions: uniaxial, biaxial and shear loads are considered. Because it is very difficult to determine the mechanical behavior of 3-dimensional corrugated structures analytically, the equivalent homogenization model is adapted to investigate the overall mechanical behavior of corrugated plates. The corrugated element is homogenized as an orthotropic material. The previous formulae for bending rigidities of corrugated plate are adapted in this paper. The comparisons of the proposed analytical results with those of FEA based on the shell element are made to verify the proposed analytical method. In the comparison study both the critical buckling loads and the buckling mode shapes are presented. Some numerical results are presented to check the effect of the geometric properties.

Bending of axially functionally graded carbon nanotubes reinforced composite nanobeams

  • Ahmed Drai;Ahmed Amine Daikh;Mohamed Oujedi Belarbi;Mohammed Sid Ahmed Houari;Benoumer Aour;Amin Hamdi;Mohamed A. Eltaher
    • Advances in nano research
    • /
    • v.14 no.3
    • /
    • pp.211-224
    • /
    • 2023
  • This work presents a modified analytical model for the bending behavior of axially functionally graded (AFG) carbon nanotubes reinforced composite (CNTRC) nanobeams. New higher order shear deformation beam theory is exploited to satisfy parabolic variation of shear through thickness direction and zero shears at the bottom and top surfaces.A Modified continuum nonlocal strain gradient theoryis employed to include the microstructure and the geometrical nano-size length scales. The extended rule of the mixture and the molecular dynamics simulations are exploited to evaluate the equivalent mechanical properties of FG-CNTRC beams. Carbon nanotubes reinforcements are distributed axially through the beam length direction with a new power graded function with two parameters. The equilibrium equations are derived with associated nonclassical boundary conditions, and Navier's procedure are used to solve the obtained differential equation and get the response of nanobeam under uniform, linear, or sinusoidal mechanical loadings. Numerical results are carried out to investigate the impact of inhomogeneity parameters, geometrical parameters, loadings type, nonlocal and length scale parameters on deflections and stresses of the AFG CNTRC nanobeams. The proposed model can be used in the design and analysis of MEMS and NEMS systems fabricated from carbon nanotubes reinforced composite nanobeam.

Study on Convergence Technique through Structural Analysis due to the Height of the Walker (보행 기구 높이에 따른 구조해석을 통한 융합 기술연구)

  • Lee, Jung-Ho;Cho, Jae-Ung
    • Journal of the Korea Convergence Society
    • /
    • v.6 no.2
    • /
    • pp.19-24
    • /
    • 2015
  • Nowadays, the number of people who do not move actively or are treated for rehabilitation is increasing because of the disorder or the paralysis of their own lower body by the industrial disaster. In this study, the walker for the people whose bodies are not convenient or the old is investigated. The walkers due to the height of walker are designed and the structural simulation analysis is carried out. The study models of walker are modelled with CATIA program and analyzed with ANSYS program. As the analysis result, the models of 1, 2 and 3 have the maximum stresses extremely below the yield stress of this model and the elastic deformations at these models occurs. Among these models, As the maximum deformation of model 3 has the least value among these models, models 3 is thought to have the best durability. The safety of walker model can be estimated by the basis of the result of this study. The damage can be prevented and the durability is examined by applying this result into the design of walker. And it is possible to be grafted onto the convergence technique at design and show the esthetic sense.

A THREE DIMENSIONAL FINITE ELEMENT STRESS ANALYSIS OF SINGLE IMPLANT PROSTHESES ACCORDING TO THE HEX-LOCK TYPE (단일 임플랜트 보철물의 Hex-lock 형태에 따른 3차원 유한요소법적 응력분석)

  • Hwang, Young-Pil;Kay, Kee-Sung;Cho, Kyu-Zong
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.34 no.2
    • /
    • pp.385-402
    • /
    • 1996
  • The purpose of this study was to analyze how the stability of the implant prostheses and the loosening of the fastening screw was affected when the various types of Hex structure provided for the effect of anti-rotation of the single prostheses were given. Three dimensional finite element model was designed with which the implants with the external hex type of 0.75mm, 1.5mm and the implant with the internal hex type of 0.75mm, 1.5mm and the implant with the external hex type of $15^{\circ}$ tapered shape of 0.75mm were supposed to completely osseointegrate to the mandible. After fininshing the finite element model, the preload of 10N at the fastening screw was applied and then the vertical and $30^{\circ}$ lateral load of 200N was applied respectively at the cusp tips of the prostheses. The following results were obtained : 1. In case of displacement, the amount of displacement was increased at the internal hex type(model C, D) than at the external hex type(model A, B, E) when the vertical and lateral load was applied. 2. Less equivalent stress was represented at the model B with increased external hex height than at the model A when the vertical and lateral load was applied. 3. Much stress was represented at the model E with increased hex angle than at the model A in case of the stress happened to the implant body and the fastening screw when the vertical and lateral load was applied. 4. Much equivalent stress was represented at the model D with deepened internal hex height than at the model C when vertical and lateral load was applied. 5. The least stress was taken at the model B and the most stress was taken at the model D in case of the stress happened to the implant when the vertical and lateral load was applied. 6. The least stress was taken at the model C at the vertical load. And the least stress was taken at the model B at lateral load in case of the stress happened to the fastening screw. As a results of this study, the good lateral stability of prostheses and less stress of the component of implant was taken when the external hex height was increased, and the risk of neck fracture of implant and fastening screw was increased when the internal hex height was deepned because of long screw neck portion and thin implant neck portion.

  • PDF

A numerical tension-stiffening model for ultra high strength fiber-reinforced concrete beams

  • Na, Chaekuk;Kwak, Hyo-Gyoung
    • Computers and Concrete
    • /
    • v.8 no.1
    • /
    • pp.1-22
    • /
    • 2011
  • A numerical model that can simulate the nonlinear behavior of ultra high strength fiber-reinforced concrete (UHSFRC) structures subject to monotonic loadings is introduced. Since engineering material properties of UHSFRC are remarkably different from those of normal strength concrete and engineered cementitious composite, classification of the mechanical characteristics related to the biaxial behavior of UHSFRC, from the designation of the basic material properties such as the uniaxial stress-strain relationship of UHSFRC to consideration of the bond stress-slip between the reinforcement and surrounding concrete with fiber, is conducted in this paper in order to make possible accurate simulation of the cracking behavior in UHSFRC structures. Based on the concept of the equivalent uniaxial strain, constitutive relationships of UHSFRC are presented in the axes of orthotropy which coincide with the principal axes of the total strain and rotate according to the loading history. This paper introduces a criterion to simulate the tension-stiffening effect on the basis of the force equilibriums, compatibility conditions, and bond stress-slip relationship in an idealized axial member and its efficiency is validated by comparison with available experimental data. Finally, the applicability of the proposed numerical model is established through correlation studies between analytical and experimental results for idealized UHSFRC beams.

A Transient Model Analysis of a Fluorescent Lamp at Startup Time (형광램프의 기동시 과도특성 모델 해석)

  • 함중걸;백수현
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.10 no.5
    • /
    • pp.52-56
    • /
    • 1996
  • Fluorescent lamps are widely accepted to energy efficient commercial lighting applications. In designing a fluorescent lamp system, a ballast design heavily relies on the characteristic of a fluorescent lamp under consideration. Especially, at startup time, the transient characteristic of a fluorescent lamp puts much tighter specification of a design. In this paper, based on the transient characteristic at the startup time, a transient behavioral model of a fluorescent lamp is presented with an equivalent circuit. The model is applicable to the wide range of fluorescent lamps provided by different manufacturers. The experimental results are compared with the results provided by PSPICE simulation. The result shows the model is effective In practice. As a result, we could identify more accurate startup constraints to decide the design of either an electro mechanical or an electronic ballast.

  • PDF

Bolted T-stubs: A refined model for flange and bolt fracture modes

  • Francavilla, Antonella B.;Latour, Massimo;Piluso, Vincenzo;Rizzano, Gianvittorio
    • Steel and Composite Structures
    • /
    • v.20 no.2
    • /
    • pp.267-293
    • /
    • 2016
  • It is well known that, in order to accurately predict the behaviour of steel structures a requirement the definition of the mechanical behaviour of beam-to column joints is of primary importance. This goal can be achieved by means of the so-called component method, which, in order to obtain the whole behaviour of connections, provides to break up joints in basic components of deformability and resistance. One of the main joint components used to model bolted connections is the so-called equivalent T-stub in tension, which is normally used to predict the behaviour of bolted plates in bending starting from the behaviour of the single bolt rows. In past decades, significant research efforts have been devoted to the prediction of the behaviour of bolted T-stubs but, to date, no particular attention has been devoted to the characterization of their plastic deformation capacity. To this scope, the work presented in this paper, taking into account the existing technical literature, proposes a new theoretical model for predicting the whole behaviour up to failure of bolted T-stubs under monotonic loading conditions, including some complexities, such as the bolt/plate compatibility requirement and the bolt fracture, which are necessary to accurately evaluate the ultimate displacement. After presenting the advances of the proposed approach, a comparison between theoretical and experimental results is provided in order to verify its accuracy.