• Title/Summary/Keyword: Equivalent Mass

Search Result 548, Processing Time 0.024 seconds

An Added-mass Modification Method Using Experimental and Numerical Frequency Analysis for Floodgate Subjected to Hydro-dynamic Loading (고유진동수 현장계측과 수치해석을 이용한 수문의 부가질량 보정법)

  • Kim, Ho Seung;Bea, Jung Ju;Kim, Yong Gon;Lee, Jee Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.6A
    • /
    • pp.607-616
    • /
    • 2009
  • In this paper, a method is proposed to accurately and efficiently estimate the equivalent added mass of hydro-dynamic pressure on dam floodgates subjected to earthquake loading. The present method is based on a relatively-simple procedure using on-site vibration measurement and finite element frequency analysis, which is sufficiently practical to be used in the earthquake resistance performance evaluation of dam floodgates.

Determination of Equivalent Hydraulic Conductivity of Rock Mass Using Three-Dimensional Discontinuity Network (삼차원 불연속면 연결망을 이용한 암반의 등가수리전도도 결정에 대한 연구)

  • 방상혁;전석원;최종근
    • Tunnel and Underground Space
    • /
    • v.13 no.1
    • /
    • pp.52-63
    • /
    • 2003
  • Discontinuities such as faults, fractures and joints in rock mass play the dominant role in the mechanical and hydraulic properties of the rock mass. The key factors that influence on the flow of groundwater are hydraulic and geometric characteristics of discontinuities and their connectivity. In this study, a program that analyzes groundwater flow in the 3D discontinuity network was developed on the assumption that the discontinuity characteristics such as density, trace length, orientation and aperture have particular distribution functions. This program generates discontinuities in a three-dimensional space and analyzes their connectivity and groundwater flow. Due to the limited computing capacity In this study, REV was not exactly determined, but it was inferred to be greater than 25$\times$25$\times$25 ㎥. By calculating the extent of aperture that influences on the groundwater flow, it was found that the discontinuities with the aperture smaller than 30% of the mean aperture had little influence on the groundwater flow. In addition, there was little difference in the equivalent hydraulic conductivity for the the two cases when considering and not considering the boundary effect. It was because the groundwater flow was mostly influenced by the discontinuities with large aperture. Among the parameters considered in this study, the length, aperture, and orientation of discontinuities had the greatest influence on the equivalent hydraulic conductivity of rock mass in their order. In case of existence of a fault in rock mass, elements of the equivalent hydraulic conductivity tensor parallel to the fault fairly increased in their magnitude but those perpendicular to the fault were increased in a very small amount at the first stage and then converged.

R-22 Condensation in Flat Aluminum Multi-Channel Tubes (알루미늄 다채널 평판관내 R-22 응축에 관한 연구)

  • Kim, Jung-Oh;Cho, Jin-Pyo;Kim, Nae-Hyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.2
    • /
    • pp.241-250
    • /
    • 2000
  • In this study, condensation heat transfer tests were conducted in flat aluminum multi-channel tubes using R-22. Two internal geometries were tested ; one with smooth inner surface and the other with micro-fins. Data are presented for the followin~ range of variables ; vapor quality($0.1{\sim}0.9$), mass flux($200{\sim}600kg/m^2s$) and heat flux($5{\sim}15kW/m^2$). The micro-fin tube showed higher heat transfer coefficients compared with those of the smooth tube. The difference increased as the vapor quality increased. Surface tension force acting on the micro-fin surface at the high vapor quality is believed to be responsible. Different from the trends of the smooth tube, where the heat transfer coefficient increased as the mass flux increased, the heat transfer coefficient of the micro-fin tube was independent of the mass flux at high vapor quality, which implies that the surface tension effect on the fin overwhelms the vapor shear effect at the high vapor quality. Present data(except those at low mass flux and high quality) were well correlated by equivalent Reynolds number, Existing correlations overpredicted the present data at high mass flux.

Friction tuned mass damper optimization for structure under harmonic force excitation

  • Nasr, Aymen;Mrad, Charfeddine;Nasri, Rachid
    • Structural Engineering and Mechanics
    • /
    • v.65 no.6
    • /
    • pp.761-769
    • /
    • 2018
  • In this work, an optimization method of Friction Tuned Mass Damper (FTMD) parameters is presented. Friction tuned mass dampers (FTMD) are attached to mechanical structures to reduce their vibrations with dissipating the vibratory energy through friction between both bodies. In order to exploit the performances of FTMD, the determination of the optimum parameters is recommended. However, the presence of Coulomb's friction force requires the resolution of a non-linear stick-slip problem. First, this work aims at determining the responses of the vibratory system. The responses of the main mass and of the FTMD are determined analytically in the sticking and sliding phase using the equivalent damping method. Second, this work aims to optimize the FTMD parameters; the friction coefficient and the tuned frequency. The optimization formulation based on the Ricciardelli and Vickery method at the resonance frequencies, this method is reformulated for a system with a viscous damping. The inverse problem of finding the FTMD parameters given the magnitude of the force and the maximum acceptable displacement of the primary system is also considered; the optimization of parameters leads to conclude on the favorable FTMD giving significant vibration decrease, and to advance design recommendations.

Investigation of Hydrodynamic Mass Characteristic for Flow Mixing Header Assembly in SMART (SMART 유동혼합헤더집합체의 동수력 질량 특성 고찰)

  • Lee, Gyu Mahn;Ahn, Kwanghyun;Lee, Kang-Heon;Lee, Jae Seon
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.16 no.1
    • /
    • pp.30-36
    • /
    • 2020
  • In SMART, the flow mixing header assembly (FMHA) is used to mix the coolant flowing into the reactor core to maintain a uniform temperature. The FMHA is designed to have enough stiffness so the resonance with reactor internal structures does not occurs during the pipe break and the seismic accidents. Since the gap between the FMHA and the core support barrel assembly is very narrow compared with the diameter of FMHA, the hydrodynamic mass effect acting on the FMHA is not negligible. Therefore the hydrodynamic mass characteristics on the FMHA are investigated to consider the fluid and structure interaction effects. The result of modal analysis for the dry and underwater conditions, the natural frequency of primary vibration mode for the horizontal direction is reduced from 136.67 Hz to 43.76 Hz. Also the result of frequency response spectrum seismic analysis for the dry and underwater conditions, the maximum equivalent stress are increased from 13.89 MPa to 40.23 MPa. Therefore, reactor internal structures located in underwater condition shall consider carefully the hydrodynamic mass effects even though they have sufficient stiffness required for performing its functions under the dry condition.

An Empirical Correlation of Refrigerant Flow Rate Through Coiled Capillary Tubes (코일 형상을 고려한 모세관 냉매유량 예측 상관식)

  • Park, Cha-Sik;Jang, Yong-Hee;Lee, Young-Soo;Kim, Yong-Chan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.1 s.256
    • /
    • pp.91-98
    • /
    • 2007
  • Air-conditioners use a spirally coiled capillary tube as an expansion device to enhance compactness of the unit. However, most empirical correlations in open literature were developed for straight capillary tubes without considering coiled effects on the mass flow rate. The objectives of this study are to investigate the flow characteristics of coiled capillary tubes and to develop a generalized correlation for mass flow rate through coiled capillary tubes. The mass flow rates through the coiled capillary tubes and straight capillary tubes were measured by varying operating conditions and tube geometry. The condensing temperatures varied at 40.5, 47.5 and $54.5^{\circ}C$, and subcoolings altered at 3.5, 6.5 and $11.5^{\circ}C$. The mass flow rates of the coiled capillary tubes decreased by 5 to 16% compared with those of the straight capillary tubes at the same operating conditions. An empirical correlation was developed by introducing equivalent length of capillary tube with non-dimensional parameters for coiled shape. The present correlation predicts the data with average and standard deviations of 0.33% and 3.24%, respectively.

Distribution and evolution of residual voids in longwall old goaf

  • Wang, Changxiang;Jiang, Ning;Shen, Baotang;Sun, Xizhen;Zhang, Buchu;Lu, Yao;Li, Yangyang
    • Geomechanics and Engineering
    • /
    • v.19 no.2
    • /
    • pp.105-114
    • /
    • 2019
  • In this paper, simulation tests were conducted with similar materials to study the distribution of residual voids in longwall goaf. Short-time step loading was used to simulate the obvious deformation period in the later stage of arch breeding. Long-time constant loading was used to simulate the rheological stage of the arch forming. The results show that the irregular caving zone is the key area of old goaf for the subsidence control. The evolution process of the stress arch and fracture arch in stope can be divided into two stages: arch breeding stage and arch forming stage. In the arch breeding stage, broken rocks are initially caved and accumulated in the goaf, followed by the step deformation. Arch forming stage is the rheological deformation period of broken rocks. In addition, under the certain loads, the broken rock mass undergoes single sliding deformation and composite crushing deformation. The void of broken rock mass decreases gradually in short-time step loading stage. Under the water lubrication, a secondary sliding deformation occurs, leading to the acceleration of the broken rock mass deformation. Based on above research, the concept of equivalent height of residual voids was proposed, and whose calculation equations were developed. Finally, the conceptual model was verified by the field measurement data.

An experimental study on the characteristics of spray pattern by the Airblast Atomizer (공기충돌형 연료분사장치의 분무특성에 관한 실험적 연구)

  • Kim, Hyun-Joong;Han, Jae-Seob;Kim, Yoo;Min, Seong-Ki
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.2 no.2
    • /
    • pp.24-29
    • /
    • 1998
  • An experimental study was carried out to investigate the characteristics of spray pattern such as discharge coefficient, spray angle, and mass distribution for two-fluid airblast swirl injector, within the range of fluid supply pressure 0~13kg/$\textrm{cm}^2$. In general atomization is promoted with increasing total gas mass flow and performance of the splay pattern was more stable when radial mass flow was greater than axial mass flow, radial swirler was better than Axial swirler for atomization. Equivalent spray angle did not change with water mass flow except for the condition of 3kg/$\textrm{cm}^2$ and showed the same for the gas mass flow. Mass distribution from the patternator shows that maximum value of the distribution were lowered but distributed larger area when gas flow rate increased. Center of mass position did not change with increasing water mass flow.

  • PDF

An Experimental Study on Low Nox Combustor Performance at High Pressure and Temperature for 20kW Class Microturbines (20kW급 마이크로터빈용 저공해 연소기의 고압고온 성능실험 연구)

  • Yoon, JeongJung;Oh, Jongsik;Lee, Heonseok
    • 유체기계공업학회:학술대회논문집
    • /
    • 2002.12a
    • /
    • pp.183-190
    • /
    • 2002
  • In order to reduce NOx emissions in the 20kw class microturbines under development, the low NOx characteristics, as being an application to the lean premixed combustion technology, have been investigated. The study has been conducted at the conditions of high temperature and pressure. Air from a compressor with the temperature of 500K to 650K and the pressure of 0.3bar gauge to 0.7bar gauge, was supplied to the combustor through an air preheat-treatment. Sampling exhaust gases were measured at the immediate exit of the combustor. for the effect of temperature on NO and CO emissions. though NOx was increased, CO was decreased with increasing inlet air temperature. With increasing inlet air pressure, NOx and CO were increased also. NOx was decreased, but CO was increased with increasing inlet air mass flow rate. The test has been performed on the equivalent ratios of 0.10 to 0.25 in a lean region. NOx was increased with increasing equivalent ratios, but CO was decreased as an influence of flame temperature. In the very lean region of the equivalent ratio below 0.12, CO was increased suddenly, due to instability. As the results of this study, NOx and CO are found to be reduced to the similar level at the same time when operated at optimal conditions.

  • PDF

Equivalent Dynamic Modeling of Coil Bundle for Prediction of Dynamic Properties of Stator in Small Motors (소형 전동기의 고정자 동특성 예측을 위한 코일 다발의 등가 동적 모형화)

  • 은희광;고홍석;김광준
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.540-545
    • /
    • 2001
  • In case of small motors, coil bundle occupies a large portion of stator in view of mass and volume as well as dynamics. It is observed through modal test on the stator of an IPM BLDC (interior permanent magnet brushless direct current) motor that coil bundle wound on the stator core causes the first and second natural frequencies to decrease by about 20-30% compared with those of bare stator. Especially the third natural frequency is newly observed below 3 KHz, which is not observed on the bare stator. It is found that at the third mode the end-coil and the core vibrate out of phase in radial direction. In this paper, the stator is dynamically modeled in terms of the core and the coil bundle consisting of the end-coil and the slot coil based on the above observations for the prediction of dynamic properties. The core can easily be modeled using finite element method with its actual material properties and geometric shape. The concept of equivalent bending stiffness is used for modeling of the end-coil so that predictions may match with the measured natural frequencies for the end-coil cut out of the stator. Although the same concept can be applied to the slot coil, separation of the slot coil from the stator is impractical. Therefore, equivalent bending stiffness of the slot coil is determined through iterative comparisons with the measurements of natural frequencies of the stator with the slot coil in it.

  • PDF