• Title/Summary/Keyword: Equivalent Fuel

Search Result 265, Processing Time 0.02 seconds

Operation Algorithm for a Parallel Hybrid Electric Vehicle with a Relatively Small Electric Motor

  • Kyoungcheol Oh;Kim, Donghyeon;Kim, Talchol;Kim, Chulsoo;Kim, Hyunsoo
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.1
    • /
    • pp.30-36
    • /
    • 2004
  • In this paper, operation algorithms for a parallel HEV equipped with a relatively small motor are investigated. For the HEV, the power assist and the equivalent fuel algorithms are proposed. In the power assist algorithm, an electric motor is used to assist the engine which provides the primary power source. Tn the equivalent fuel algorithm, the electric energy stored in the battery is considered to be an equivalent fuel, and an equivalent brake specific fuel consumption for the electric energy is proposed. From the equivalent fuel algorithm, distribution of the engine power and the motor power is determined to minimize the fuel consumption for a given battery state of charge (SOC) and a required vehicle power. It is found from the simulation results that the fuel economy and the final battery SOC depend on the motor discharge energy and it is the best way to charge the battery only by the regenerative braking, not by the engine to improve the overall fuel efficiency of the HEV with the relatively small motor.

A Study on the Fuel Cell Equivalent Circuit Modeling (연료전지 수치해석을 이용한 등가회로 모델링 연구)

  • OH, HWANYEONG;CHOI, YOON YOUNG;SOHN, YOUNG-JUN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.33 no.3
    • /
    • pp.226-231
    • /
    • 2022
  • Power converter are usually equipped for fuel cell power generation system to connect alternating current (AC) electric power grid. When converting direct current (DC) of fuel cell power source into AC, the power converter has a frequency ripple, which affects the fuel cell and the grid. Therefore, an equivalent circuit having dynamic characteristics of fuel cell power, for example, impedance, is useful for designing an inverter circuit. In this study, the current, voltage and impedance characteristics were calculated through fuel cell modeling and validated by comparing them with experiments. The equivalent circuit element values according to the current density were formulated into equations so that it could be applied to the circuit design. It is expected that the process of the equivalent circuit modeling will be applied to the actual inverter circuit design and simulated fuel cell power sources.

Equivalent Consumption Minimization Strategy of Fuel Cell Hybrid Vehicles (연료전지 하이브리드 자동차의 ECMS)

  • Zheng, Chun-Hua;Park, Yeong-Il;Lim, Won-Sik;Cha, Suk-Won
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.6
    • /
    • pp.46-51
    • /
    • 2012
  • Fuel Cell Hybrid Vehicles (FCHVs) have become a major topic of interest in the automotive industry owing to recent energy supply and environmental problems. Several types of power management strategies have been developed to improve the fuel economy of FCHVs including optimal control strategy based on optimal control theory, rule-based strategy, and equivalent consumption minimization strategy (ECMS). The ECMS is applied in this study. This strategy is based on the heuristic concept that the usage of the electric energy can be exchanged to equivalent fuel consumption. This strategy is known as one of the promising solutions for real-time control of hybrid vehicles. The ECMS for an FCHV is introduced in this paper as well as the equivalent fuel consumption parameter. The relationship between the battery final state of charge (SOC) and the fuel consumption while changing the equivalent fuel consumption parameter is obtained for three different driving cycles. The function of the equivalent fuel consumption parameter is also discussed.

A study on the mechanically equivalent surrogate plate of U-Mo dispersion fuel using tungsten

  • Kim, Hyun-Jung;Yim, Jeong-Sik;Jeong, Yong-Jin;Lee, Kang-Hee
    • Nuclear Engineering and Technology
    • /
    • v.51 no.2
    • /
    • pp.495-500
    • /
    • 2019
  • When a new fuel is developed, various mechanical properties are absolutely necessary for a safety analysis of the fuel for the licensing and prediction of its mechanical behavior during operation and accident conditions. In this paper, a mechanically equivalent surrogate plate of U-Mo dispersion fuel is presented using tungsten, substitute material of U-Mo particle. A surrogate plate, composed of tungsten/aluminum dispersion meat and aluminum alloy cladding, is manufactured with the same fabrication process with that of fuel plate except that a tungsten powder is used instead of U-Mo powder. A modal test showed that the surrogate plate and fuel plate have similar dynamic characteristics, and a tensile test demonstrated the similarity of the material property up to the yield strength range. The conducted tests proved that the surrogate tungsten plate has equivalent mechanical behaviors with that of a fuel plate, which leads to the acceptable use of a surrogate fuel assembly using tungsten/aluminum dispersion meat in various mechanical tests. The surrogate fuel assembly can be utilized for various out-of-pile characteristic tests, which are necessary for the licensing achievement of a research reactor that uses U-Mo dispersion fuel as a driver.

Optimization of Battery Power Distribution to Improve Fuel Consumption of Fuel Cell Hybrid Vehicle (연료전지 하이브리드 차량의 연비향상을 위한 배터리 동력분배 최적화)

  • Lee, Dong Sup
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.3
    • /
    • pp.397-403
    • /
    • 2013
  • The demand for eco-friendly and higher fuel economy vehicles has helped develop eco-friendly and fuel-efficient vehicles such as hybrid vehicles. In a hybrid vehicle, the change in the battery charge after driving should be added to the fuel consumption as the equivalent fuel usage based on its own characteristics. Thus, the fuel efficiency of a hybrid vehicle cannot be improved simply by increasing the battery capacity. In this study, I attempt to improve the total fuel economy of a hybrid vehicle, including the equivalent fuel consumption, by modeling a fuel cell hybrid vehicle using Matlab Simulink, analyzing the usage zone of the fuel cell with the existing control strategy, and optimizing the power distribution of the battery and fuel cell in the main usage zone of the fuel cell.

OPERATION ALGORITHMS FOR A FUEL CELL HYBRID ELECTRIC VEHICLE

  • PARK C.;KOOK K.;OH K.;KIM D.;KIM H.
    • International Journal of Automotive Technology
    • /
    • v.6 no.4
    • /
    • pp.429-436
    • /
    • 2005
  • In this paper, operation algorithms are evaluated for a fuel cell hybrid electric vehicle (FCHEV). Power assist, load leveling and equivalent fuel algorithm are proposed and implemented in the FCHEV performance simulator. It is found from the simulation results that the load leveling algorithm shows poor fuel economy due to the system charge and discharge efficiency. In the power assist and equivalent fuel algorithm, the fuel cell stack is operated in a relatively better efficiency region owing to the battery power assist, which provides the improved fuel economy.

Multi-scale heat conduction models with improved equivalent thermal conductivity of TRISO fuel particles for FCM fuel

  • Mouhao Wang;Shanshan Bu;Bing Zhou;Zhenzhong Li;Deqi Chen
    • Nuclear Engineering and Technology
    • /
    • v.55 no.3
    • /
    • pp.1140-1151
    • /
    • 2023
  • Fully Ceramic Microencapsulated (FCM) fuel is emerging advanced fuel material for the future nuclear reactors. The fuel pellet in the FCM fuel is composed of matrix and a large number of TRistructural-ISOtopic (TRISO) fuel particles which are randomly dispersed in the SiC matrix. The minimum layer thickness in a TRISO fuel particle is on the order of 10-5 m, and the length of the FCM pellet is on the order of 10-2 m. Hence, the heat transfer in the FCM pellet is a multi-scale phenomenon. In this study, three multi-scale heat conduction models including the Multi-region Layered (ML) model, Multi-region Non-layered (MN) model and Homogeneous model for FCM pellet were constructed. In the ML model, the random distributed TRISO fuel particles and coating layers are completely built. While the TRISO fuel particles with coating layers are homogenized in the MN model and the whole fuel pellet is taken as the homogenous material in the Homogeneous model. Taking the results by the ML model as the benchmark, the abilities of the MN model and Homogenous model to predict the maximum and average temperature were discussed. It was found that the MN model and the Homogenous model greatly underestimate the temperature of TRISO fuel particles. The reason is mainly that the conventional equivalent thermal conductivity (ETC) models do not take the internal heat source into account and are not suitable for the TRISO fuel particle. Then the improved ETCs considering internal heat source were derived. With the improved ETCs, the MN model is able to capture the peak temperature as well as the average temperature at a wide range of the linear powers (165 W/cm~ 415 W/cm) and the packing fractions (20%-50%). With the improved ETCs, the Homogenous model is better to predict the average temperature at different linear powers and packing fractions, and able to predict the peak temperature at high packing fractions (45%-50%).

Evaluation of Hybridization in FCVs Based on Equivalent Fuel Consumption (등가 연료 소모량을 이용한 연료전지 자동차의 하이브리화에 대한 평가)

  • Zheng, Chun-Hua;Shin, Chang-Woo;Park, Yeong-Il;Cha, Suk-Won
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.5
    • /
    • pp.143-147
    • /
    • 2011
  • Operating points of a fuel cell system (FCS) can be shifted to its high-efficiency region by hybridization in a fuel cell hybrid vehicle (FCHV), so the hydrogen can be saved. In this paper, the hydrogen consumption of an FCHV is compared to that of a fuel cell vehicle (FCV). A power management strategy is applied to the FCHV and the related simulation is carried out. The concept of equivalent hydrogen consumption is introduced in order to consider the effect of the difference between initial and final battery SOC on the total hydrogen consumption.

Replacement Investment with Pallet Fuel System in Greenhouse Fruit and Vegetables (목재펠릿시스템의 대체투자 가능성 분석 - 시설과채 사례 -)

  • Kim, Seongsup;Kim, Taehoo;Seo, Sangtaek
    • Journal of Agricultural Extension & Community Development
    • /
    • v.25 no.3
    • /
    • pp.149-160
    • /
    • 2018
  • This study aimed to analyze the replacement investment of the diesel fuel system with the pallet fuel system in the Korean farming sector. Equivalent annual annuity approach was used to resolve a discrepancy of useful life in capital goods and to facilitate investment analyses in an independent perspective. Data was obtained from previous studies on economic analysis of greenhouse tomato, paprika and cucumber. Results showed that the replacement with the pallet fuel system was acceptable irrespective of the remaining period of useful life for the diesel fuel system. In addition, sensitivity analysis with government support level, repair cost, and light and heat energy cost show ed robustness in the possibility of replacement with the pallet fuel system while the speed of replacement was accelerated with an increase in the amount of diesel fuel used and price of diesel fuel, and a decrease in price of the pallet fuel. The result implied that the replacement investment rather than a new investment was appropriate for existing greenhouse farmers and the pallet fuel system was acceptable to replace existing diesel fuel system in producing greenhouse tomato, paprika and cucumber.

A Study on the Vibration Reduction of an Automobile Fuel Pump (자동차용 연료펌프의 진동 저감에 대한 연구)

  • Kim, Byeong Jin;Won, Hong In;Lee, Seong Won;Park, Sang Jun;Chung, Jintai
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.04a
    • /
    • pp.772-777
    • /
    • 2013
  • This article presents the reduction of vibration generated by an automobile fuel pump. In order to analysis the vibration of the fuel pump, a simplified dynamic model is established, which is composed of a rigid rotor and a equivalent springs. The equivalent stiffnesses of the upper and lower assemblies are evaluated by the comparison of modal testing results and the finite element analysis. the stiffness for the oil film of the journal bearing is extracted by using Reynold's equation. In addition, the time responses for the vibration of the fuel pump are computed by using a commercial multi-body dynamics software, RecurDyn. Based on these results, some design suggestions are proposed to reduce the vibration of an automobile fuel pump.

  • PDF