• Title/Summary/Keyword: Equipment load

Search Result 1,139, Processing Time 0.024 seconds

A Study on the Certification of Miscellaneous Non-Required Electrical Equipment (부가적인 전기 장비품의 인증 방안)

  • Kim, IL-Young;Suh, Jang-Won
    • Journal of Aerospace System Engineering
    • /
    • v.1 no.4
    • /
    • pp.1-6
    • /
    • 2007
  • The interest about the installation and certification for miscellaneous non-required electrical equipment is being increased in the domestic aviation industries. In this paper, the minimum applicable requirements in Airworthiness Standard and the acceptable means of compliance which can be applied to installation and certification for miscellaneous non-required electrical equipment is being researched. As a case study, galley certification procedures are presented by electrical load analysis, installation of warning devices and installation requirements.

  • PDF

Effect of Shifting the Pole-shoe and Damper-bar Centerlines on the No-load Voltage Waveform of a Tubular Hydro-generator

  • Fan, Zhen-nan;Han, Li;Liao, Yong;Xie, Li-dan;Wen, Kun;Wang, Jun;Dong, Xiu-cheng;Yao, Bing
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.3
    • /
    • pp.1294-1303
    • /
    • 2018
  • This study optimises the no-load voltage waveform of tubular hydro-generators by a simple design scheme. For different centerlines of the pole shoe and damper bar, the optimisation effects on the no-load voltage waveform are investigated in two tubular hydro-generators with different weighted powers (34 MW and 18 MW). The results are compared with those of the traditional stator-slots skewed design. The quality of the no-load voltage waveform was related to the shifting degree, and the different optimisation effects between the integer slot generator (q = 2) and the fractional slot generator (q = 11/2) were analysed. This research can improve the quality of the power output and no-load voltage waveform, and provide an effective reference for improving the industrial design and manufacture level of tubular hydro-generators.

Structure and Strength Analysis of Scissors Boom of Heavy Load Transporter through Finite Element Analysis (유한요소해석을 통한 중량물 이동대차 시저스붐의 구조 및 강도 해석)

  • Hyeon-Ho Lim;Chang-Min Yang;Kwon-Woong Choi;Dae-Woo Choi
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.46 no.spc
    • /
    • pp.61-67
    • /
    • 2023
  • Special equipment used for snow removal is only used in the winter and must be moved into storage during non-winter seasons. However, when moving heavy equipment using a forklift within a limited space, safety accidents may occur due to deformation and damage due to the worker's limited visibility and excessive loading of heavy objects. In this study, the scissors boom of the developed heavy load transporter was conducted in two cases: link structural analysis and position-based structural analysis. In detail, the link structural analysis covers four cases of stress and safety factor according to material and thickness to optimize the specifications of the material selected during development, and the structural analysis according to position covers two cases before and after the lift, when maximum stress concentration is achieved. Safety was evaluated through finite element analysis. As a result of the study, when manufacturing a scissors boom type heavy load transporter that can withstand a load of 10 tons, the link showed safety at SS400 4.5mm or higher, and reinforcement is needed in the upper and lower structures, so it is judged to be useful in applying materials according to the load.

Experimental Study on the Performance of an Air-Cooling System for Telecommunication Equipment (통신장비용 공냉형 냉각시스템의 성능 특성에 대한 실험적 연구)

  • Jeon, Jong-Ug;Choi, Jong-Min;Heo, Jae-Hyeok;Kim, Yong-Chan
    • Proceedings of the SAREK Conference
    • /
    • 2005.11a
    • /
    • pp.323-328
    • /
    • 2005
  • The objective of this study is to analyze the cooling performance of an air- cooling system for telecommunication equipment. Temperature variation and capacity were measured in an actual unit for telecommunication equipment. In addition, the cooling performance was measured by installing a silicon rubber heater as a heat source in a cabinet. The standard thermal load for telecommunication equipment was approximately 293 W, and the maximum temperature of the heated surface was $64.5^{\circ}C$. The average and maximum temperatures of the heated surface were proportional to the inlet air temperature. When the heat load increased from 293 W to 400 W, the maximum temperature of the heated surface was higher than $64.5^{\circ}C$ even though the inlet air temperature decreased from 25 to $11^{\circ}C$.

  • PDF

Development of Onboard Scales to Measure the Weight of Trucks (상용차량의 하중을 측정하기 위한 탑재형 자중계 개발)

  • Seo, Myoung Kook;Shin, Hee Yong;Lee, Ho Yeon;Ko, Jea Il;Tumenjargal, Enkhbaatar
    • Journal of Drive and Control
    • /
    • v.18 no.1
    • /
    • pp.9-16
    • /
    • 2021
  • Overloaded vehicles increase the maintenance cost of road structures, and they are a major factor in causing damage to the roads and bridges. In addition, overloaded vehicles compromise the braking capability of the vehicle; thus, threatening the safety of the driver. In order to prevent overloading of vehicles, the government is cracking down on the roads by using a device that measures the weight of vehicles. But this process is inconvenient because the place where the equipment is installed is far away from where the cargo is loaded. Due to the limitations of these fixed weighing devices, there is a growing need for technology that can monitor vehicle weight distribution and overload conditions in real time. In this work, we develop an onboard scale that can measure the load (weight) of trucks in real time. The onboard scale consists of high sensors, a signal processing unit, and a display, and it measures the load using height-displacement of the vehicle's leaf spring suspension.

Throughput Analysis of the Twin Chamber Platform Equipment according to the Load-lock Configuration (쌍 체임버 기반 장비의 로드락 구성에 따른 생산성 분석)

  • Hong, Joo-Pyo;Lee, Ki-Seok
    • Journal of the Semiconductor & Display Technology
    • /
    • v.7 no.2
    • /
    • pp.39-43
    • /
    • 2008
  • Productivity is one of the performance indices of the semiconductor equipment in manufacturing viewpoint. Among many ways tried and adopted for improvement of the productivity of the FAB equipment, variation of equipment configuration was considered and its effect on the throughput was analyzed. Parallel machine cycle charts that were generated based on the equipment log were used in the analysis. Efficiency of the equipment due to change of the structure and the probability of the usage in the manufacturing process were examined. The results showed that the modification of the control algorithm in the equipment and the redistribution of the process time for each process and transfer module along to the change in the structure enhance the throughput of the equipment.

  • PDF

Design of Multifunctional Compound Joint Medical Equipment for Continuous Passive Motion (다기능 복합관절 연속수동운동 의료기기 설계)

  • Lee, Kang Won;Yang, Oh;Lee, Chang Ho
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.4
    • /
    • pp.126-131
    • /
    • 2022
  • The number of joint disease patients is increasing every year. Currently, the most CPM(Continuous Passive Motion) equipment uses expensive imported equipment, and one CPM equipment is designed to be used only in one joint, medical personnel or hospitals who are the main users of the medical equipment need to have several types of CPMs for joint rehabilitation. To solve this problem, this paper designed a multifunctional joint medical equipment that enables rehabilitation of knee, shoulder, and elbow joints in one CPM equipment and includes general, intensive, and adaptive exercise functions for effective treatment according to the patient's condition. The patient's condition was diagnosed using a load cell and a current sensor. In this paper, effective rehabilitation methods were presented and high reliability and precision of medical equipment was confirmed through experiments using potentiometer, encoder, and PI controller.

A Study on the welding design for the main frame of the construction equipment (건설 장비 메인프레임의 용접부 강도 설계에 관한 연구)

  • Park, Yun-Gi;Kim, Hyeon-Su;Sin, Sang-Beom
    • Proceedings of the KWS Conference
    • /
    • 2006.10a
    • /
    • pp.23-25
    • /
    • 2006
  • The purpose of this study is to optimize the plate thickness of the main frame of a construction equipment. For this, the load history at the joints of the main frame was evaluated using mechanism and finite element analysis. With the load data, the stress and the stiffness at the main frame was evaluated and the fatigue life at each weld joint of the main frame was assessed with the change of the plate thickness. Based on the results of this study, the proper plate thicknesses of the frame of the construction equipment were proposed.

  • PDF

Design of Occupant Protection Equipment for Passenger Car Using Taguchi Method (다구찌법을 이용한 자동차 승객 보호 장구의 설계)

  • 이권희;주원식;이주영
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.04a
    • /
    • pp.299-304
    • /
    • 2003
  • The design of an occupant protection equipment has been considered as the important process in developing a new car since the crash performance plays an important role on the market. The cost is increased when an unexpected real test is carried out in the proto-design stage. Thus, the exact prediction of a crash performance can reduce the number of full-car test. In this research, the robust design of an airbag system considering the frontal crash is suggested to predict the more reliable responses. On the contrary, most existing researches do not consider the uncertainties. The uncertainties treated in this research are the tolerances of the vent hole, the time to fire and the length of a strap in airbag and the tolerance of the load limiter load in seat belt. The Taguchi method is utilized to determine the robust optimum of each parameter

  • PDF

The Algorithm of Safety Equipment of The Hydraulic Excavator with Crane Working (크레인 기능을 가진 굴삭기 안전장치 알고리즘)

  • 손구영;김승수;양순용;이병룡;안경관
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.75-79
    • /
    • 2002
  • A hydraulic Excavator is applied for outdoor tasks in construction, agriculture and undersea etc. When a hydraulic Excavator works crane function tasks, most of disasters happen. In this study, In order to preventing these disasters, the safety equipment algorithm for crane working is developed, and the safety equipment algorithm for crane working is being developed. The proposed control algorithm(Zero Moment Point) is designed to avoid overload. The hydraulic excavator for crane function must work within a maximum limit of load. To accurately detect a working load, pressure sensors of boom, arm cylinder, and angle sensors of boom, arm and bucket joint are used.

  • PDF