• Title/Summary/Keyword: Equipment failure analysis

Search Result 346, Processing Time 0.202 seconds

A Study of Equipment Accuracy and Test Precision in Dual Energy X-ray Absorptiometry (골밀도검사의 올바른 질 관리에 따른 임상적용과 해석 -이중 에너지 방사선 흡수법을 중심으로-)

  • Dong, Kyung-Rae;Kim, Ho-Sung;Jung, Woon-Kwan
    • Journal of radiological science and technology
    • /
    • v.31 no.1
    • /
    • pp.17-23
    • /
    • 2008
  • Purpose : Because there is a difference depending on the environment as for an inspection equipment the important part of bone density scan and the precision/accuracy of a tester, the management of quality must be made systematically. The equipment failure caused by overload effect due to the aged equipment and the increase of a patient was made frequently. Thus, the replacement of equipment and additional purchases of new bonedensity equipment caused a compatibility problem in tracking patients. This study wants to know whether the clinical changes of patient's bonedensity can be accurately and precisely reflected when used it compatiblly like the existing equipment after equipment replacement and expansion. Materials and methods : Two equipments of GE Lunar Prodigy Advance(P1 and P2) and the Phantom HOLOGIC Spine Road(HSP) were used to measure equipment precision. Each device scans 20 times so that precision data was acquired from the phantom(Group 1). The precision of a tester was measured by shooting twice the same patient, every 15 members from each of the target equipment in 120 women(average age 48.78, 20-60 years old)(Group 2). In addition, the measurement of the precision of a tester and the cross-calibration data were made by scanning 20 times in each of the equipment using HSP, based on the data obtained from the management of quality using phantom(ASP) every morning (Group 3). The same patient was shot only once in one equipment alternately to make the measurement of the precision of a tester and the cross-calibration data in 120 women(average age 48.78, 20-60 years old)(Group 4). Results : It is steady equipment according to daily Q.C Data with $0.996\;g/cm^2$, change value(%CV) 0.08. The mean${\pm}$SD and a %CV price are ALP in Group 1(P1 : $1.064{\pm}0.002\;g/cm^2$, $%CV=0.190\;g/cm^2$, P2 : $1.061{\pm}0.003\;g/cm^2$, %CV=0.192). The mean${\pm}$SD and a %CV price are P1 : $1.187{\pm}0.002\;g/cm^2$, $%CV=0.164\;g/cm^2$, P2 : $1.198{\pm}0.002\;g/cm^2$, %CV=0.163 in Group 2. The average error${\pm}$2SD and %CV are P1 - (spine: $0.001{\pm}0.03\;g/cm^2$, %CV=0.94, Femur: $0.001{\pm}0.019\;g/cm^2$, %CV=0.96), P2 - (spine: $0.002{\pm}0.018\;g/cm^2$, %CV=0.55, Femur: $0.001{\pm}0.013\;g/cm^2$, %CV=0.48) in Group 3. The average error${\pm}2SD$, %CV, and r value was spine : $0.006{\pm}0.024\;g/cm^2$, %CV=0.86, r=0.995, Femur: $0{\pm}0.014\;g/cm^2$, %CV=0.54, r=0.998 in Group 4. Conclusion: Both LUNAR ASP CV% and HOLOGIC Spine Phantom are included in the normal range of error of ${\pm}2%$ defined in ISCD. BMD measurement keeps a relatively constant value, so showing excellent repeatability. The Phantom has homogeneous characteristics, but it has limitations to reflect the clinical part including variations in patient's body weight or body fat. As a result, it is believed that quality control using Phantom will be useful to check mis-calibration of the equipment used. A value measured a patient two times with one equipment, and that of double-crossed two equipment are all included within 2SD Value in the Bland - Altman Graph compared results of Group 3 with Group 4. The r value of 0.99 or higher in Linear regression analysis(Regression Analysis) indicated high precision and correlation. Therefore, it revealed that two compatible equipment did not affect in tracking the patients. Regular testing equipment and capabilities of a tester, then appropriate calibration will have to be achieved in order to calculate confidential BMD.

  • PDF

Initiating Events Study of the First Extraction Cycle Process in a Model Reprocessing Plant

  • Wang, Renze;Zhang, Jiangang;Zhuang, Dajie;Feng, Zongyang
    • Journal of Radiation Protection and Research
    • /
    • v.41 no.2
    • /
    • pp.117-121
    • /
    • 2016
  • Background: Definition and grouping of initiating events (IEs) are important basics for probabilistic safety assessment (PSA). An IE in a spent fuel reprocessing plant (SFRP) is an event that probably leads to the release of dangerous material to jeopardize workers, public and environment. The main difference between SFRPs and nuclear power plants (NPPs) is that hazard materials spread diffusely in a SFRP and radioactive material is just one kind of hazard material. Materials and Methods: Since the research on IEs for NPPs is in-depth around the world, there are several general methods to identify IEs: reference of lists in existence, review of experience feedback, qualitative analysis method, and deductive analysis method. While failure mode and effect analysis (FMEA) is an important qualitative analysis method, master logic diagram (MLD) method is the deductive analysis method. IE identification in SFRPs should be consulted with the experience of NPPs, however the differences between SFRPs and NPPs should be considered seriously. Results and Discussion: The plutonium uranium reduction extraction (Purex) process is adopted by the technics in a model reprocessing plant. The first extraction cycle (FEC) is the pivotal process in the Purex process. Whether the FEC can function safely and steadily would directly influence the production process of the whole plant-production quality. Important facilities of the FEC are installed in the equipment cells (ECs). In this work, IEs in the FEC process were identified and categorized by FMEA and MLD two methods, based on the fact that ECs are containments in the plant. Conclusion: The results show that only two ECs in the FEC do not need to be concerned particularly with safety problems, and criticality, fire and red oil explosion are IEs which should be emphatically analyzed. The results are accordant with the references.

Establishment of Diagnostic Criteria in the Preventive Diagnostic System for the Power Transformer (전력용 변압기 예방진단새스템의 진단기준치 실정)

  • Kweon Dong-Jin;Koo Kyo-Sun;Kwak Joo-Sik;Woo Jung-Wook;Kang Yeon-Wook
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.54 no.9
    • /
    • pp.449-456
    • /
    • 2005
  • The preventive diagnostic technique prevents transformers from power failure through giving alarm and observing transformers in service. And it helps to establish the plan for optimum maintenance of the transformer as well as to find location or cause of fault using accumulated data. Data detection and experience of the preventive diagnostic system need to establish the preventive diagnostic algorithm regarding interrelationship between detected data and deterioration of equipment. Therefore in-depth analysis about the preventive diagnosis system is required. KEPCO has adopted the preventive diagnostic system at nine 345kV substations since 1997. Techniques for component sensors of the preventive diagnosis system were settled but diagnosis algorithm, diagnostic criteria and practical use of accumulated data are not yet established. This paper, to build up the base of preventive diagnostic algorithm for the Power transformer. investigated the preventive diagnostic criteria for the power transformer.

A Study of Built-In-Test Diagnosis Mistakes as a False Alarm Filter Useful Redundant Techniques for Built-in-Test Related System

  • Oh, Hyun Seung;Yoo, Wang Jin
    • Journal of Korean Society for Quality Management
    • /
    • v.21 no.2
    • /
    • pp.1-16
    • /
    • 1993
  • Early generations of products had little to no inherent capability to test themselves. The technologies involved often required only visual inspection and limited probing to troubleshoot the system once it was turned over to maintenance personnel. However, as the complexity of military and commercial systems grew, symptoms of failure became less noticeable to the operator. Therefore, the procedure to access, inspect, repair and replace a component became complicated, the requirements for personnel skill and testing equipment increased. and it took too long of a time to maintain a system. Meanwhile, the need for availability became more mission-critical and maintenance become very expensive. The obvious solution was to design in-system circuits or devices to self-test the primary system, the Built-In-Test(BIT) was born. This approach has continued right on up through present systems and is an integral part of systems now being designed. The object of this paper is to present a state-of-the-art research for filtering out the BIT diagnosis mistakes using Bayesian analysis and develop the algorithm for Redundant systems with BIT to improve BIT diagnosis.

  • PDF

A Experiment Study for Welding Optimization of fillet Welded Structure (필릿 용접 구조물의 용접 최적화률 위한 실험적 연구)

  • Kim, Il-Soo;Na, Hyun-Ho;Kim, Ji-Sun;Lee, Ji-Hye
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.9
    • /
    • pp.1054-1061
    • /
    • 2011
  • GMA welding process is a production process to improve productivity for the provision of higher quality of material, These includs numerous process variables that could affect welding quality, productivity and cost savings. Recently, the welding part of construction equipment had frequent failure of major components in the welding part of each subsidiary material due to shock which is very poor according to the welding part. Therefore, the implementation of sound welding procedure is the most decisive factor for the reliability of construction machinery. The data generated through experimens conducted in this study has validated its effectiveness for the optimization of bead geometry and process variables is presented. The criteria to control the process parameters, to achieve a healthy bead geometry. This study has developed mathematical models and algorithms to predict or control the bead geometry in GMA fillet welding process.

Experimental approach to evaluate software reliability in hardware-software integrated environment

  • Seo, Jeongil;Kang, Hyun Gook;Lee, Eun-Chan;Lee, Seung Jun
    • Nuclear Engineering and Technology
    • /
    • v.52 no.7
    • /
    • pp.1462-1470
    • /
    • 2020
  • Reliability in safety-critical systems and equipment is of vital importance, so the probabilistic safety assessment (PSA) has been widely used for many years in the nuclear industry to address reliability in a quantitative manner. As many nuclear power plants (NPPs) become digitalized, evaluating the reliability of safety-critical software has become an emerging issue. Due to a lack of available methods, in many conventional PSA models only hardware reliability is addressed with the assumption that software reliability is perfect or very high compared to hardware reliability. This study focused on developing a new method of safety-critical software reliability quantification, derived from hardware-software integrated environment testing. Since the complexity of hardware and software interaction makes the possible number of test cases for exhaustive testing well beyond a practically achievable range, an importance-oriented testing method that assures the most efficient test coverage was developed. Application to the test of an actual NPP reactor protection system demonstrated the applicability of the developed method and provided insight into complex software-based system reliability.

A Study on Slope Reinforcement Method for Control of Rockfall and Small Scale Failure (낙석 및 소규모 붕괴 방지를 위한 사면보강방안에 관한 연구)

  • Lee, Seung-Ho;Hwang, Young-Cheol;Noh, Heung-Jae;Sim, Seok-Rae
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.796-805
    • /
    • 2005
  • Most rockfall prevention net among the rockfall prevention equipment that is constructed in around the road is actuality lack of function by quantitative research insufficiency etc.. Most of rockfall prevention net are composed to setting needle, perpendicular and horizontal wire rope and wire net. Also, function of rockfall prevention net depend on setting needle and the wire net and perpendicular and horizontal wire rope are fixed by setting needle. when unreasonable load is offered setting needle, rockfall prevention net can lose the function and happen continuous falling off of rockfall prevention net. Because rockfall prevention net have a such structural defect, improvement had been required in reply. So in this paper, spot application of Rock Bolt & Net Connection method and falling rock support ability are estimated by numerical analysis. As a result, when Rock Bolt & Net Connection Method is applied to cutting slope, decreases of stress and displacement is examined than current rockfall prevention net.

  • PDF

Contractors' Perception towards Safety and its Consequences on Construction Workers in Cape Coast Metropolis

  • Mustapha, Zakari
    • The Korean Journal of Food & Health Convergence
    • /
    • v.5 no.6
    • /
    • pp.11-16
    • /
    • 2019
  • The construction environment has been declared as a hazard prone area due to high number of accident and death. The study aims to identify influential factors that contribute to poor safety practices and its consequences on construction workers in Cape Coast Metropolis. Seventy respondents were taken as the sample size for the study. Descriptive analysis was used to analyze the data obtained from the field. Findings show that poor site management, working without safety gadgets, failure to use their Personal Protective Equipment (PPE) and negligence of workers were the main causes of accidents on sites. Poor site management had the highest ranking among the seven variables. Effects of poor safety practices on building construction site and delays in work execution were due to injury of workers, extra cost due to payment of compensation to injured victims, not motivated due to injury of worker and declined reputation of firm. Management team should motivate workers for safe work done, provide adequate PPE for their workers on site and have documented health and safety policy on site. Site authorities and management team should be on site regularly to ensure proper safety practices on construction site.

Fault Detection and Diagnosis Simulation for CAV AHU System (정풍량 공조시스템의 고장검출 및 진단 시뮬레이션)

  • Han, Dong-Won;Chang, Young-Soo;Kim, Seo-Young;Kim, Yong-Chan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.10
    • /
    • pp.687-696
    • /
    • 2010
  • In this study, FDD algorithm was developed using the normalized distance method and general pattern classifier method that can be applied to constant air volume air handling unit(CAV AHU) system. The simulation model using TRNSYS and EES was developed in order to obtain characteristic data of CAV AHU system under the normal and the faulty operation. Sensitivity analysis of fault detection was carried out with respect to fault progress. When differential pressure of mixed air filter increased by more than about 105 pascal, FDD algorithm was able to detect the fault. The return air temperature is very important measurement parameter controlling cooling capacity. Therefore, it is important to detect measurement error of the return air temperature. Measurement error of the return air temperature sensor can be detected at below $1.2^{\circ}C$ by FDD algorithm. FDD algorithm developed in this study was found to indicate each failure modes accurately.

A Experiment Study for Selection of Welding Condition of fillet Welded Structure (필릿용접 구조물의 용접조건 선정을 위한 실험적 연구)

  • Na, Hyun-Ho;Kim, Ill-Soo;Kim, Ji-Sun;Lee, Ji-Hye
    • Journal of Welding and Joining
    • /
    • v.29 no.4
    • /
    • pp.41-47
    • /
    • 2011
  • GMA welding process is a production process to improve productivity for the provision of higher welding quality of material. These includes numerous process variables that could affect welding quality, productivity and cost savings. Recently, the welding part of construction equipment had frequent failure of major components in the welding part of each subsidiary material due to shock which is very poor according to the welding part. Therefore, the implementation of sound welding procedure is the most decisive factor for the reliability of construction machinery. The data generated through experiments conducted in this study has validated its effectiveness for the optimization of bead geometry and process variables is presented. The criteria to control the process parameters, to achieve a good bead geometry. This study has developed mathematical models and algorithms to predict or control the bead geometry in GMA fillet welding process.