• Title/Summary/Keyword: Equipment Layout Verification

Search Result 3, Processing Time 0.017 seconds

A Study on the Model of Equipment Layout Verification for Offshore Plant Maintenance Equipment Engineering (해양플랜트 유지보수장치 엔지니어링을 위한 장비 배치 검증수행모델에 관한 연구)

  • Han, Seong Jong;Park, Peom
    • Plant Journal
    • /
    • v.13 no.4
    • /
    • pp.41-47
    • /
    • 2017
  • This paper is a study on validation model that can verify the arrangement of equipment constituting offshore plant using system engineering approach in offshore plant tender stage. In order to design offshore plant topside maintenance equipment, topside layout verification should be preceded. However, there are many errors in the bidding stage due to the FEED results that are not perfect, the verification can not be performed sufficiently due to the limitation of the bidding period and others reasons. Therefore, we propose a validation model that can effectively verify the equipment layout within a limited condition by simplifying the main process in the system engineering process, which is a multidisciplinary approach, and confirmed through the Functional Deployment Model. Also, we verified the validation model for topside equipment deployment through case studies.

  • PDF

A Study of FEED Verification process of Small Utility Equipment in Offshore plant (해양플랜트 소형 유틸리티장비의 FEED 검증 프로세스에 대한 연구)

  • Han, Seong-Jong;Park, Beom
    • Plant Journal
    • /
    • v.13 no.2
    • /
    • pp.39-45
    • /
    • 2017
  • This paper is a study on FEED validation model that can be used in the bidding stage of small utility equipment in offshore plant industry using system engineering technique. Currently, domestic marine plant equipment industry companies are faced with the financial risk of project execution as they enter marine plant. The major cause was the insufficient ability to verify the FEED output from the contractor (Engineering or Procurement and Construction) of the equipment manufacturer (COMPANY or EPC). Therefore, we propose FEED design verification method that simplifies the system engineering method that sequentially applies requirements analysis, function, performance analysis and physical architecture building process. Also, we verified the suitability of the developed model by comparing the results of applying the developed FEED verification model and the verification method that depends on the existing experience for the small utility equipment (Air Compressor).

  • PDF

Simulation-based Production Analysis of Food Processing Plant Considering Scenario Expansion (시나리오 확장을 고려한 식품 가공공장의 시뮬레이션 기반 생산량 분석)

  • Yeong-Hyun Lim ;Hak-Jong, Joo ;Tae-Kyung Kim ;Kyung-Min Seo
    • Journal of the Korea Society for Simulation
    • /
    • v.32 no.3
    • /
    • pp.93-108
    • /
    • 2023
  • In manufacturing productivity analysis, understanding the intricate interplay among factors like facility performance, layout design, and workforce allocation within the production line is imperative. This paper introduces a simulation-based methodology tailored to food manufacturing, progressively expanding scenarios to analyze production enhancement. The target system is a food processing plant, encompassing production processes, including warehousing, processing, subdivision, packaging, inspection, loading, and storage. First, we analyze the target system and design a simulation model according to the actual layout arrangement of equipment and workers. Then, we validate the developed model reflecting the real data obtained from the target system, such as the workers' working time and the equipment's processing time. The proposed model aims to identify optimal factor values for productivity gains through incremental scenario comparisons. To this end, three stages of simulation experiments were conducted by extending the equipment and worker models of the subdivision and packaging processes. The simulation experiments have shown that productivity depends on the placement of skilled workers and the performance of the packaging machine. The proposed method in this study will offer combinations of factors for the specific production requirements and support optimal decision-making in the real-world field.