• Title/Summary/Keyword: Equilibrium problems

Search Result 357, Processing Time 0.027 seconds

Design of a Swing Up Controller for Inverted Pendulum System (도립진자의 스윙업 제어기 설계)

  • Kwon, Yo-Han;Choi, Won-Ho;Kim, Beom-Soo;Lim, Myo-Taeg
    • Proceedings of the KIEE Conference
    • /
    • 1999.11c
    • /
    • pp.643-645
    • /
    • 1999
  • In experiment, a real inverted pendulum system has state constraints and limited amplitude of input. These problems make it difficult to design a swing-up controller. To overcome these problems, we design a sliding mode controller considering physical behaviour of the inverted pendulum system. This sliding mode controller uses a switching control action to converge along a specified path derived from energy equation from a state around the path to desired states(standing position). And optimal control method is used to guarantee stability at unstable equilibrium position. The designed controller can be applied to all inverted pendulum systems regardless of the values of their parameters. Compared with previous existing controllers, it is simple and easy to tune. Experimental results are given to show the effectiveness of this controller.

  • PDF

A Study on the Bending Buckling Behavior of Circular Cylindrical Shells (원통형 쉘의 휨 좌굴 거동에 대한 연구)

  • 정진환;김성도;하지명
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.10a
    • /
    • pp.208-215
    • /
    • 1998
  • A stability problems of isotropic shells under pure bending is investigated based on the classical shells theory. The governing equations of stability problem presented by Donnell and Love, are developed and the solutions for the cylindrical shells are obtained by using Galerkin method. Bending moment is applied at the ends of the cylindrical shell as a from of distributed load in the shape of sine curve. For the isotropic materials, the result of the general purpose structural analysis program based on the finite element method are compared with the critical moment obtained from the classical shell theories. The critical loads for the cylindrical shells with various geometry can not be evaluated with a simple equation. However, accurate solutions for the stability problems of cylindrical shells can be obtained through the equilibrium equation developed in the study.

  • PDF

Optimizing structural topology patterns using regularization of Heaviside function

  • Lee, Dongkyu;Shin, Soomi
    • Structural Engineering and Mechanics
    • /
    • v.55 no.6
    • /
    • pp.1157-1176
    • /
    • 2015
  • This study presents optimizing structural topology patterns using regularization of Heaviside function. The present method needs not filtering process to typical SIMP method. Using the penalty formulation of the SIMP approach, a topology optimization problem is formulated in co-operation, i.e., couple-signals, with design variable values of discrete elements and a regularized Heaviside step function. The regularization of discontinuous material distributions is a key scheme in order to improve the numerical problems of material topology optimization with 0 (void)-1 (solid) solutions. The weak forms of an equilibrium equation are expressed using a coupled regularized Heaviside function to evaluate sensitivity analysis. Numerical results show that the incorporation of the regularized Heaviside function and the SIMP leads to convergent solutions. This method is tested using several examples of a linear elastostatic structure. It demonstrates that improved optimal solutions can be obtained without the additional use of sensitivity filtering to improve the discontinuous 0-1 solutions, which have generally been used in material topology optimization problems.

The 'Middle-Income Country Trap' and Technological Catch-up: The Case of the Machine Tools Industry in Korea (기계산업에서의 중진국 함정과 기술추격: 한국 기계산업의 사례)

  • Kim Yoon-Zi
    • Journal of Technology Innovation
    • /
    • v.14 no.1
    • /
    • pp.147-175
    • /
    • 2006
  • One of the biggest problems of Korean economy is polarization of firms for export and domestic demand and that of conglomerates and SME's achievement. One of the culprits lies weakness of intermediate industry such as machine tool. Since intermediate industry is important path where export performance affects domestic demand and whose actor usually is SMEs with high spill over effect in labor market. Especially, intermediate industry Is vulnerable because of industrial policy biased In backward linkage effect. However if a country fails to develop intermediate industry above some critical point, that country would fall in low-tech equilibrium without growth. In case of benign circle where final goods industry growth leads growth of intermediate industry and again it leads that of final goods industry, it can reach high-tech equilibrium. By contrast, in opposite case where in industrialization latecomer fails to link industries likewise above some critical point that country would fall in low-tech equilibrium without growth. Moreover, for several reasons, machine tool firms of Korea have difficulty in catching up technology above critical point. Firstly. Conglomerate demander neglects their product. Secondly, even after success of development overcoming difficulties they fail to get market share for response of dumping of foreign competitors. And the last one is patent litigation of foreign competitors that incapacitate the technology development. For these, Korean machine tool firms fell in 'middle-income country trap' itself, since they stuck in some extent when they technologically catch up. Consequently, for latecomer country in machine tool industry to leapfrog meaningfully policy support is necessary, Weak intermediate industry does not Induce domestic firms and remained fragile. Therefore, localization, policy should reflect condition of technological catch up more than before, in order to be effective and fruitful. There should be turning point over relationship between conglomerates, major demander of machine tool and SME's, for only with active purchasing of conglomerate Korean machine industry can grow.

  • PDF

Upper Bound Limit Analysis of Bearing Capacity for Surface Foundations on Sand Overlying Clay (점토층위의 모래지반에 위치한 얕은 기초의 지지력에 대한 상한 한계해석)

  • 김대현;야마모토켄타로
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.3
    • /
    • pp.85-96
    • /
    • 2004
  • The ultimate bearing capacity of surface foundations on a sand layer overlying clay has been theoretically investigated. First, a review of previous studies on the bearing capacity problems for this type of foundation was performed and a discussion was presented concerning the practical application. Second, the kinematic approach of limit analysis was used to calculate the upper bound of the true ultimate bearing capacity. The kinematic solutions are upper bounds and their accuracy depends primarily on the nature of the assumed failure mechanism. This approach makes it convenient to create design charts, and it is possible to trace the influence of parameters. Third, the commercial finite element program ABAQUS was applied to obtain the ultimate bearing capacity based on the elasto-plastic theory. Results obtained from the kinematic approach were compared with those from the program ABAQUS and the limit equilibrium equations proposed by Yamaguchi, Meyerhof and Okamura et al. Finally, the validities of the results from the kinematic approach, the results from the program ABAQUS and the limit equilibrium equations were examined.

Efficient non-linear analysis and optimal design of biomechanical systems

  • Shojaei, I.;Kaveh, A.;Rahami, H.;Bazrgari, B.
    • Biomaterials and Biomechanics in Bioengineering
    • /
    • v.2 no.4
    • /
    • pp.207-223
    • /
    • 2015
  • In this paper a method for simultaneous swift non-linear analysis and optimal design/posture of mechanical/biomechanical systems is presented. The method is developed to get advantages of iterations in non-linear analysis and/or generations in genetic algorithm (GA) for the purpose of efficient analysis within the optimal design/posture. The method is applicable for both size and geometry optimizations wherein material and geometry non-linearity are present. In addition to established mechanical systems, the method can solve biomechanical models of human musculoskeletal system. Optimization-based procedures are popular methods for resolving the redundancy at joints wherein the number of unknown muscle forces is far more than the number of equilibrium equations. These procedures involve optimization of a cost function(s) which is assumed to be consistent with the central nervous system's strategy when activating muscles to assure equilibrium. However, because of the complexity of biomechanical problems (i.e., due to non-linear biomaterial, large deformation, redundancy of the problem and so on) efficient analysis are required within optimization procedures as suggested in this paper.

A Proposal for Inverse Demand Curve Production of Cournot Model for Application to the Electricity Market

  • Kang Dong-Joo;Oh Tae-Kyoo;Chung Koohyung;Kim Balho H.
    • KIEE International Transactions on Power Engineering
    • /
    • v.5A no.4
    • /
    • pp.403-411
    • /
    • 2005
  • At present, the Cournot model is one of the most commonly used theories to analyze the gaming situation in an oligopoly type market. However, several problems exist in the successful application of this model to the electricity market. The representative one is obtaining the inverse demand curve able to be induced from the relationship between market price and demand response. In the Cournot model, each player offers their generation quantity to obtain maximum profit, which is accomplished by reducing their quantity compared with available total capacity. As stated above, to obtain the probable Cournot equilibrium to reflect the real market situation, we have to induce the correct demand function first of all. Usually the correlation between price and demand appears over the long-term through statistical data analysis (for example, regression analysis) or by investigating consumer utility functions of several consumer groups classified as residential, industrial, and commercial. However, the elasticity has a tendency to change continuously according to the total market demand size or the level of market price. Therefore it should be updated as the trading period passes by. In this paper we propose a method for inducing and updating this price elasticity of demand function for more realistic market equilibrium.

A Proposed Method for Estimating Demand function of Cournot Model in Electricity Market (전력시장에서의 쿠르노 수요함수 추정)

  • Kang, Dong-Joo;Hur, Jin;Oh, Tae-Kyoo;Chung, Koo-Hyung;Kim, Bal-Ho H.
    • Proceedings of the KIEE Conference
    • /
    • 2005.11b
    • /
    • pp.168-170
    • /
    • 2005
  • At present Cournot model is one of the most commonly used theories to analyze the gaming situation in oligopoly market. But there exist several problems to apply this model to electricity market. The representative one is to obtain the inverse demand curve able to be induced from the relationship between market price and demand response. In Cournot model, each player offers their generation quantity to accomplish maximum profit, which is accomplished by reducing their quantity compared with available total capacity. As stated above, to obtain the probable Cournot equilibrium to reflect real market situation, we have to induce the correct demand function first of all. Usually the correlation between price and demand appears on the long-term basis through the statistical data analysis (for example, regression analysis) or by investigating consumer utility functions of several consumer groups classified as residential, industrial, and commercial. However, the elasticity has a tendency to change continuously according to the total market demand size or the level of market price. Therefore it should be updated as trading period passes by. In this paper we propose a method for inducing and updating this price elasticity of demand function for more realistic market equilibrium

  • PDF

Analysis of Interfacial Surface Crack Perpendicular to the Surface (표면에 수직한 계면방향 표면균열의 해석)

  • 최성렬
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.2
    • /
    • pp.277-284
    • /
    • 1993
  • Interfacial surface crack perpendicular to the surface, which is imbedded into bonded quarter planes under single anti-plane shear load is analyzed. The problem is formulated using Mellin transform, form which single Wiener-Hopf equation is derived. By solving the equation stress intensity factor is obtained in closed form. This solution can be used as a Green's function to generate the solutions of other problems with the same geometry but of different loading conditions.

RCGA-Based State Feedback Control for Seesaw Systems (시소 시스템을 위한 RCGA 기반의 상태피드백 제어)

  • Oh, Sea-June;So, Myung-Ok;Jung, Byung-Gun;Ryu, Ki-Tak;Lee, Yun-Hyung;Lee, Sang-Tae
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.6
    • /
    • pp.974-980
    • /
    • 2008
  • Generally. most of the physical systems affected by disturbance or incomplete knowledge are complex and highly nonlinear. To control under these circumstances. many researches are ongoing in modern control theory recently. But the researches need apparatuses. which can verify the controller for being not damaged the real plant. In this paper. therefore. a seesaw system is considered control system to analyze and apply the control theory. A seesaw system consists of a moving cart on the rail and seesaw frame made to demonstrate the effectiveness of the control theory. The system has balancing and positioning problems. and the driving force is applied on the DC motor of cart. but not on the pivot. The purpose of control is to maintain an equilibrium of seesaw frame in spite of an allowable disturbance. Computer simulations are given to illustrate the control performance of the proposed scheme.