• Title/Summary/Keyword: Equilibrium composition

Search Result 227, Processing Time 0.027 seconds

Design of Naphtha Splitter Unit with Petlyuk Distillation Column Using Aspen HYSYS Simulation (Aspen HYSYS를 이용한 나프타 분리공정의 Petlyuk Distillation Column 설계)

  • Lee, Ju-Yeong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.2
    • /
    • pp.21-27
    • /
    • 2018
  • FRN (Full range Naphtha) is distilled from crude oil in a Naphtha Splitter Unit and is separated into the Light Straight Naphtha, Heavy Naphtha, and kerosene according to the boiling point in sequence. This separation is conducted using a series of binary-like columns. In this separation method, the energy consumed in the reboiler is used to separate the heaviest components and most of this energy is discarded as vapor condensation in the overhead cooler. In this study, the first two columns of the separation process are replaced with the Petlyuk column. A structural design was exercised by a stage to stage computation with an ideal tray efficiency in the equilibrium condition. Compared to the performance of a conventional system of 3-column model, the design outcome indicates that the procedure is simple and efficient because the composition of the liquid component in the column tray was designed to be similar to the equilibrium distillation curve. An analysis of the performance of the new process indicated an energy saving of 12.3% under same total number of trays and with a saving of the initial investment cost.

A Study on the Alloy Design of High Capacity Ti-Based Metal Hydride for Ni/MH Rechargeable Battery (Ni/MH 2차 전지용 고용량 Ti계 수소저장합금의 설계에 관한 연구)

  • Lee, Han-Ho;Lee, Jai-Young
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.7 no.1
    • /
    • pp.19-28
    • /
    • 1996
  • Ti-Mn based hydrogen storage alloy were modified by substituting alloying elements such as Zr, V and Ni in order to design a high capacity MH electrode for Ni/MH rechargeable battery. When V was substituted in Ti-Mn binary system, the crystal structure was maintained as $Cl_4$ Laves phase at a composition of $Ti_{0.2}V_{0.4}Mn_{0.4}$ and $Ti_{0.4}V_{0.2}Mn_{0.4}$ and equilibrium pressure decreased below 1 atm without decreasing hydrogen storage capacity considerably. It was found that Ni should be included in Ti-V-Mn alloy in order to hydrogenate it electrochemically in KOH electrolyte. But substitution of Ni for Mn in Ti-V-Mn system caused the increase of equilibrium pressure above 1atm and decrease of hydrogen storage capacity. Zr was able to increase the reversible hydrogen storage capacity of Ti-V-Mn-Ni alloy without considerable change of hydrogenation properties. The electrochemical discharge capacity of Ti-Zr-V-Mn-Ni system were in the range of 350 - 464mAh/g and among them $Ti_{0.8}Zr_{0.2}V_{0.5}Mn_{0.5}Ni_{1.0}$ alloy had $Cl_4$ Laves single phase and very high electrochemical discharge capacity of 464mAh/g.

  • PDF

Simulating reactive distillation of HIx (HI-H2O-I2) system in Sulphur-Iodine cycle for hydrogen production

  • Mandal, Subhasis;Jana, Amiya K.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.2
    • /
    • pp.279-286
    • /
    • 2020
  • In this article, we develop a reactive distillation (RD) column configuration for the production of hydrogen. This RD column is in the HI decomposition section of the sulphur - iodine (SI) thermochemical cycle, in which HI decomposition and H2 separation take place simultaneously. The section plays a major role in high hydrogen production efficiency (that depends on reaction conversion and separation efficiency) of the SI cycle. In the column simulation, the rigorous thermodynamic phase equilibrium and reaction kinetic model are used. The tuning parameters involved in phase equilibrium model are dependent on interactive components and system temperature. For kinetic model, parameter values are adopted from the Aspen flowsheet simulator. Interestingly, there is no side reaction (e.g., solvation reaction, electrolyte decomposition and polyiodide formation) considered aiming to make the proposed model simple that leads to a challenging prediction. The process parameters are determined on the basis of optimal hydrogen production as reflux ratio = 0.87, total number of stages = 19 and feeding point at 8th stage. With this, the column operates at a reasonably low pressure (i.e., 8 bar) and produces hydrogen in the distillate with a desired composition (H2 = 9.18 mol%, H2O = 88.27 mol% and HI = 2.54 mol%). Finally, the results are compared with other model simulations. It is observed that the proposed scheme leads to consume a reasonably low energy requirement of 327 MJ/kmol of H2.

Patterns of Nitrogen Excretion in Growing Pigs

  • Lee, K.U.;Boyd, R.D.;Austic, R.E.;Ross, D.A.;Han, In K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.11 no.6
    • /
    • pp.732-738
    • /
    • 1998
  • Three crossbred gilts weighing $61{\pm}2kg$ ($mean{\pm}SD$) and three gilts weighing $52{\pm}3kg $ on the day before the first treatment began (d -1) were used for each of two experiments (Exp. 1 and Exp. 2), respectively. In Exp. 1, all pigs were fed the experimental diet (CP 19%) from d -7 to the end of study (d 21) to verify that nitrogen retention is constant during the 21 -d period. In Exp. 2, pigs were fed the control diet (CP 15.5 %) from d -7 to d 8 and then the low-lysine diet from d 9 to d 16 in order to determine how rapidly dietary changes in amino acid composition results in a new equilibrium for nitrogen metabolism. The amount of urine nitrogen loss was not different over 21 days (p > 0.10). Rates of nitrogen retention were not different among pigs (p > 0.10) nor over time (p > 0.10). Average nitrogen retention during the period was 1.00 g/kg $BW^{0.75}$ per day. The apparent biological value was 41%, which did not change over the 3-week period (p > 0.10). The overall efficiency of nitrogen use for nitrogen retention was 35% (Exp. 1). The amount of nitrogen loss in urine and the efficiency of nitrogen utilization for nitrogen gain reached a new equilibrium within 2 to 3 d after the diet was changed. The low-lysine diet resulted in a 20% increase of nitrogen loss in urine (p < 0.001) and a 9% decline in efficiency of nitrogen use for nitrogen retention (p < 0.001). Nitrogen retention while the pigs were fed the control diet was also higher than the retention when pigs were fed the low lysine diet (p < 0.001). The efficiency of nitrogen use for nitrogen retention in pigs fed the control diet was 57% (Exp. 2), which was higher (p < 0.001) than that from pigs fed the low-lysine diets (52%).

The Relationship between the Estimated Water Content and Water Soluble Organic Carbon in PM10 at Seoul, Korea (서울시 PM10 내의 수용성 유기탄소와 수분함량과의 상관성 분석)

  • Lee, Seung Ha;Kim, Yong Pyo;Lee, Ji Yi;Lee, Seung Muk
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.33 no.1
    • /
    • pp.64-74
    • /
    • 2017
  • In this study, we have analyzed relationship between the measured Water Soluble Organic Carbon (WSOC) concentrations and the estimated aerosol water content of $PM_{10}$ (particulate matter with an aerodynamic diameter of less than or equal to $10{\mu}m$) for the period between September 2006 and August 2007 at Seoul, Korea. Water content of $PM_{10}$ was estimated by using a gas/particle equilibrium model, Simulating composition of Atmospheric Particles at Equilibrium 2 (SCAPE2). The WSOC concentrations showed low correlation with Elemental Carbon (EC), but Water Insoluble Organic Carbon (WISOC) were highly correlated with EC. It seemed that hydrophilic groups were produced by secondary formation rather than primary formation. As with the previous studies, WSOC showed good correlation with secondary ions ($NO_3{^-}$, $SO_4{^{2-}}$, $NH_4{^+}$), especially WSOC was highly correlated with $NO_3{^-}$ that is a secondary ion formed by photochemical oxidation from more local sources than $SO_4{^{2-}}$. No apparent correlation between the measured WSOC and estimated water content was observed. However, WSOC showed good correlation with estimated water content when it was assumed that relative humidity was higher than the deliquescence relative humidity of the system. In conclusion, WSOC is correlated with water content by hygroscopic ions and it is expected that nitrate play an important role among the water content and WSOC.

Assessment of geothermal potential in an area of sulfate-rich hot springs, Bugok, southern Korea

  • Park Seong-Sook;Yun Seong-Taek;Chae Gi-Tak;So Chil-Sup;Koh Yong-Kwon;Choi Hyeon-Su
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2006.04a
    • /
    • pp.303-306
    • /
    • 2006
  • Using a variety of chemical geothermometers we estimate the temperature of a deep geothermal reservoir in relation to thermal groundwater in the Bugok area, southern Korea, in order to assess the potential use of geothermal energy in South Korea. Thermal water at Bugok has been exploited down to about 400 m below the land surface and shows the highest outflow temperatures (up to $78{\circ}C$) in South Korea. Based on the hydrochemical data and occurrence, groundwater in Bugok can be classified into three groups: $Na-SO_4$ type thermal groundwater (CTGW) occurring in the central part (about 0.24 $km^2$) $Ca-HCO_3$ type cold groundwater (SCGW) occurring in shallow peripheral parts of CTGW; and the intermediate type groundwater (STGW). CTGW waters are typical of thermal water in the area, because they have the highest outflow temperatures and contain very high concentrations of Na, K and $SiO_2$ due to the sufficient reaction with silicate minerals in deep reservoir. Their enriched $SO_4$ was likely formed by gypsum dissolution. The major ion composition of CTGW shows the general approach to a partial equilibrium state with rocks at depth. The application of various alkali ion geothermometers yields temperature estimates in the range of 88 to $198{\circ}C$ for the thermal reservoir. Multiple mineral equilibrium calculation indicates asimilar but narrower temperature range between about 100 and $155{\circ}C$. These temperature estimates are not significantly higher than the measured outflow temperatures for CTGW Considering the heat loss during the ascent- of thermal waters, this fact may suggest that a thermal reservoir in the study area is likely located at relatively shallow depths (possibly close to the depth of preexisting wells). Therefore, we suggest a high potential for geothermal energy development around the Bugok area in southern Korea.

  • PDF

Gas Composition and Fluid Inclusion Studies of the Mesozoic Granitic Rocks in South Korea (남한의 중생대 화강암중의 가스성분과 유체포유물 연구)

  • Kim, Kyu Han;Park, Seong Sook;Ryuichi, Sugisaki
    • Economic and Environmental Geology
    • /
    • v.29 no.4
    • /
    • pp.455-470
    • /
    • 1996
  • Mesozoic granitic rocks in the Korean peninsula contain $H_2$, $CH_4$, CO and rare $C_2H_6$. The Jurassic Daebo granites mostly belonging to the ilmenite series are predominated in $CH_4$. Meanwhile, the magnetite series Bulguksa granites of Cretaceous age in the Kyongsang basin and Okchon zone are relatively enriched in $CO_2$. The older granites have a wide variation of $CH_4/CO_2$ ratios (0.1~1.0) compared to those of the younger ones (0.1~0.5). This characteristics of gas compositions suggest that the Jurassic granites are principally derived from the partial melting of metasedimentary rocks with much reducing materials in the lower continental crust. On the other hand, the mantle source granitic magmas might be responsible for the Cretaceous granites characterized by dominant and homogeneous $CO_2$ gas compositions. Liquid-vapor homogenization temperatures of quartz in the Jurassic and Cretaceous granites range from 108 to $539^{\circ}C$ (av. $324^{\circ}C$) and 160 to $556^{\circ}C$ (av. $358^{\circ}C$), respectively. Their salinities are between 0.2 and 16.3 wt.% NaCl for the Jurassic granites and 0.4, and 15.6 wt.% NaCl for the Cretaceous ones. Fluid inclusions with solid daughter minerals lying on or near the halite equilibrium curve represent inclusion fluids from the magmatic stage. The type I and II fluid inclusions which are plotted apart from the equilibrium curve are considered to trap in late hydrothermal alteration stage with a increasing influx of metedric water.

  • PDF

Studies on the Estimation of Theromodynamic Properties for the Non-Azeotropic Refrigerant Mixtures (혼합냉매의 열역학적 물성치 추산에 관한 연구)

  • 김민수;김동섭;노승탁;김욱중;윤재호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.5
    • /
    • pp.1337-1348
    • /
    • 1990
  • Estimations of the thermodynamic properties are made for the selected binary non-azeotropic refrigerant mixtures including R13B1/R114, R22/R114, R12/R114, R152a/R114, R13B1/R152a and R13B1/R12 using the Peng-Robinson equation of state and mixing rules. In this study, we find that the binary interaction coefficients for the above mixtures have an effect upon the vapor-liquid equilibria and the thermodynamic properties. As the binary interaction coefficient becomes larger, the deviation from the idealized model, say, Raoult`s rule, is obvious. A correlation is proposed to relate the binary interaction coefficient to the difference between the dipole moments op each pure refrigerant. Vapor-liquid equilibrium are also accurately estimated using the binary interaction coefficient. Pressure-enthalpy and temperature-entropy relations are plotted for a certain composition ratio of each refrigerant mixture. Results show that the estimating method in this study can be applied to the investigation of the thermodynamic properties for the binary non-azeotropic refrigerant mixtures.

Relationship between Hydrochemical Variation of Groundwater and Gas Tigtness in the Underground Oil Storage Caverns (지하원유비축기지 공동주변 지하수의 수질화학적 변화와 기밀성과의 관계)

  • Jeong Chan Ho
    • The Journal of Engineering Geology
    • /
    • v.14 no.3 s.40
    • /
    • pp.259-272
    • /
    • 2004
  • The purpose of this study is to investigate the effect of hydrochemical variation of groundwater on the gas tigtness in an unlined oil storage cavern. The groundwater chemistry is greatly influenced by the seawater mixing, the water curtain and the dissolution of grounting cements. The chemical composition of groundwater greatly varies ac-cording to both the location of monitoring wells and the sampling period. Most of groundwater shows alkaline pH and high electrical conductivity. The chemical types of groundwater show the dominant order as follows : Na-Cl type > Ca-Cl type > $Ca-HCO_3(CO_3)$ type. Thermodynamic equilibrium state between chemical composition of groundwater and major minerals indicates that carbonate minerals except clay minerals can be precipitated as a secondary mineral. It means that the secondary precipitates can not greatly exerts the clogging effect into fracture aperture in rock mass around oil storage cavern. The content of total organic carbon (TOC) shows a slightly increasing trend from initial stage to late stage. The $EpCO_2$ was computed so as to assess the gas contribution on the $CO_2$ in groundwater. The $EpCO_2$ of 0$\~$41.3 indicates that the contribution of oil gas on $CO_2$ pressure in groundwater system can be neglected.

Temperature Effect on the Swelling Pressure of a Domestic Compacted Bentonite Buffer (국산 압축벤토나이트 완충재의 온도에 따른 팽윤압 특성 연구)

  • Lee, Ji-Hyeon;Lee, Min-Soo;Choi, Heui-Joo;Choi, Jong-Won
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.8 no.3
    • /
    • pp.207-213
    • /
    • 2010
  • The effect of temperature on swelling pressure was observed with a Korean domestic Ca-bentonite which has been considered as a potential buffer material in the engineering barrier of a high level radioactive waste (HLW) disposal system. The Ca-bentonite was compacted to a dry density of 1.6 g/$cm^3$, and then de-ionized water was supplied into it with a constant pressure of 0.69 MPa. The equilibrium swelling pressures were measured with different temperatures of $25^{\circ}C$, $30^{\circ}C$, $40^{\circ}C$, $50^{\circ}C$, $60^{\circ}C$, $70^{\circ}C$, respectively. The Ca-bentonite showed a sufficiently high swelling pressure of 5.3 MPa at room temperatures. Then it was clearly showed that the equilibrium swelling pressure was decreased with an increase of temperature. Interestingly, there were some differences in temperature effect on the equilibrium swelling pressure when the environmental temperature is increasing or decreasing. For further clarifying the swelling behaviour of a Korea domestic Ca-bentonite, the change of a compaction level, and the composition variation of a supplied water would be needed to use in conceptual design of HLW disposal system.