• Title/Summary/Keyword: Equilibrium calculations

Search Result 148, Processing Time 0.019 seconds

Ab initio Electronic Structure Calculations of $O_2$ Using Coupled Cluster Approaches and Many-Body Perturbation Theory

  • Yoon Sup Lee;Sang Yeon Lee
    • Bulletin of the Korean Chemical Society
    • /
    • v.12 no.2
    • /
    • pp.211-213
    • /
    • 1991
  • The ground state of the oxygen molecule is calculated by various methods of coupled cluster approaches and many body perturbation theory using a double zeta plus polarization basis set and the UHF reference state. All the methods employed are capable of describing the oxygen molecule near the equilibrium bond length and the separated atom, but do not correctly depict the breaking of the multiple bond. For this basis set, including more correlations does not necessarily improve the agreement with experiment for molecular properties such as bond lengths and dissociation energies.

Temperature and Concentration Dependencies of Chemical Equilibrium for Reductive Dissolution of Magnetite Using Oxalic Acid

  • Lee, Byung-Chul;Oh, Wonzin
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.19 no.2
    • /
    • pp.187-196
    • /
    • 2021
  • Chemical equilibrium calculations for multicomponent aqueous systems involving the reductive dissolution of magnetite (Fe3O4) with oxalic acid (H2C2O4) were performed using the HSC Chemistry® version 9. They were conducted with an aqueous solution model based on the Pitzer's approach of one molality aqueous solution. The change in the amounts and activity coefficients of species and ions involved in the reactions as well as the solution pH at equilibrium was calculated while changing the amounts of raw materials (Fe3O4 and H2C2O4) and the system temperature from 25℃ to 125℃. In particular, the conditions under which Fe3O4 is completely dissolved at high temperatures were determined by varying the raw amount of H2C2O4 and the temperature for a given raw amount of Fe3O4 fed into the aqueous solution. When the raw amount of H2C2O4 added was small for a given raw amount of Fe3O4, no undissolved Fe3O4 was present in the solution and the pH of the solution increased significantly. The formation of ferrous oxalate complex (FeC2O4) was observed. The equilibrium amount of FeC2O4 decreased as the raw amount of H2C2O4 increased.

Global Stability of Geosynthetic Reinforced Segmental Retaining Walls in Tiered Configuration (계단식 블록식 보강토 옹벽의 전체 안전성)

  • Yoo, Chung-Sik;Kim, Sun-Bin
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.9
    • /
    • pp.23-32
    • /
    • 2008
  • This paper presents the global stability of geosynthetic reinforced segmental retaining walls in tiered configuration. Four design cases of walls with different geometries and offset distances were analyzed based on the FHWA and NCMA design guidelines and the discrepancies between the different guidelines were identified. A series of global slope stability analyses were conducted using the limit-equilibrium analysis and the continuum mechanics based shear strength reduction method with the aim of identifying failure patterns and the associated factors of safety. The results indicated among other things that the FHWA design approach yields conservative results both in the external and internal stability calculations, i.e., lower factors of safety, than the NCMA design approach. It was also found that required reinforcement lengths are usually governed by the global slope stability requirement rather than the external stability calculations. Also shown is that the required reinforcement lengths for the upper tiers are much longer than those based on the current design guidelines.

An Assessment on the Containment Integrity of Korean Standard Nuclear Power Plants Against Direct Containment Heating Loads

  • Seo, Kyung-Woo;Kim, Moo-Hwan;Lee, Byung-Chul;Jeun, Gyoo-Dong
    • Nuclear Engineering and Technology
    • /
    • v.33 no.5
    • /
    • pp.468-482
    • /
    • 2001
  • As a process of Direct Containment Heating (DCH) issue resolution for Korean Standard Nuclear Power Plants (KSNPs), a containment load/strength assessment with two different approaches, the probabilistic and the deterministic, was performed with all plant-specific and phenomena-specific data. In case of the probabilistic approach, the framework developed to support the Zion DCH study, Two-Cell Equilibrium (TCE) coupled with Latin Hypercubic Sampling (LHS), provided a very efficient tool to resolve DCH issue. In case of the deterministic approach, the evaluation methodology using the sophisticated mechanistic computer code, CONTAIN 2.0 was developed, based on findings from DCH-related experiments or analyses. For three bounding scenarios designated as Scenarios V, Va, and VI, the calculation results of TCE/LHS and CONTAIN 2.0 with the conservatism or typical estimation for uncertain parameters, showed that the containment failure resulted from DCH loads was not likely to occur. To verify that these two approaches might be conservative , the containment loads resulting from typical high-pressure accident scenarios (SBO and SBLOCA) for KSNPs were also predicted. The CONTAIN 2.0 calculations with boundary and initial conditions from the MAAP4 predictions, including the sensitivity calculations for DCH phenomenological parameters, have confirmed that the predicted containment pressure and temperature were much below those from these two approaches, and, therefore, DCH issue for KSNPS might be not a problem.

  • PDF

A Study on the Crack Growth Behavior of a Inclined Crack in a Non-Uniform Thickness Material (두께가 일정하지 않은 재료에서 경사진 균열의 성장거동에 관한 연구)

  • 조명래;표창률;박종주;고명훈
    • Journal of the Korean Society of Safety
    • /
    • v.12 no.4
    • /
    • pp.27-38
    • /
    • 1997
  • The effect of geometry factors on the combined mode stress intensity factor behaviors of a slant crack in a non-uniform thickness material was analysed by 2-dimensional theoretical analysis. The analysis is based on the Laurent's series expansions of complex potentials where the complex coefficients of the series are determined from the compatibility and the equilibrium conditions of the thickness interface and the stress free conditions of the crack surface. In numerical calculations the perturbation technique is employed. The expressions for the crack tip stress intensity factor are given in the form of power series of dimensionless crack length $\lamda$, and the function of crack slant angle $\alpha$ and thickness ratio $\beta$. The results of numerical calculations for each problems are represented as the correction factors F($\lamda$, $\alpha$, $\beta$). The results clearly show the following characteristics : The correction factors of the combined mode stress intensity factors for a non-uniform thickness material can be defined in the form of F($\lamda$, $\alpha$, $\beta$). The stress intensity factor values for a given crack length are decreased with increase of thickness ratio $\beta$.

  • PDF

Analysis on the solute redistribution in coarsening dendrite arms during solidification of binary metal alloys (수지상가지의 조대화를 고려한 이원합금의 응고과정동안 용질 재분배 해석)

  • Yu, Ho-Seon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.4
    • /
    • pp.1437-1448
    • /
    • 1996
  • This paper presents a simplified model for approximate analysis of the solute redistribution in coarsening dendrite arms during solidification of binary metal alloys. By introducing a quadratic concentration profile with a time-dependent coefficient, the integral equation for diffusion in the solid phase is reduced to a simple differential relation between the coefficient and the solid-liquid interface position. The solid fraction corresponding to the system temperature is readily determined from the relation, phase equilibrium and the overall solute balance in which the liquid phase is assumed to be completely mixed. In order to validate the developed model, calculations are performed for the directional solidification of Al-4.9 mass Cu alloy. The predicted eutectic fractions for a wide range of the cooling rate reasonably agree with data from the well-known experiment as well as sophisticated numerical analyses. Also, the results for the back diffusion limits are consistent with available references. Additional calculations show that the characteristic parameters such as the coarsening, density variation and nonlinarity in the phase diagram significantly affect the microsegregation. Owing to the simplicity, efficiency and compatibility, the present model may be suitable for the micro-macroscopic solidification model as a microscopic component.

Explaining the Drift Behavior of Caffeine and Glucosamine After Addition of Ethyl Lactate in the Buffer Gas of an Ion Mobility Spectrometer

  • Fernandez-Maestre, Roberto;Velasco, Andres Reyes;Hill, Herbert H.
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.4
    • /
    • pp.1023-1028
    • /
    • 2014
  • Protonated caffeine ($CH^+$) and glucosamine ($GH^+$) overlapped in an analysis with ion mobility spectrometryquadrupole mass spectrometry. Ethyl lactate vapor (L) at different concentrations from 0 to 22 mmol $m^{-3}$ was added as a buffer gas modifier to separate these signals. The drift times of $CH^+$ and $GH^+$ increased with L concentration. The drift time increase was associated to clustering equilibria of $CH^+$ and $GH^+$ with one molecule of L and the equilibrium of $GH^+$ was more displaced to the formation of $GLH^+$ than that of $GLH^+$. $GH^+$ clustered more to L than $CH^+$ because $GLH^+$ formed more stable hydrogen bonds (26.30 kcal/mol) than $GLH^+$ (24.66 kcal/mol) and the positive charge in $GH^+$ was more sterically accessible than in $CH^+$. The aim of this work was to use theoretical calculations to guide the selection of a buffer gas modifier for IMS separations of two compounds that overlap in the mobility spectra and predict this separation, simplifying that empirical process.

Thermodynamic analysis of the deposition process of SiC/C functionally gradient materials by CVD technique (CVD법을 이용한 SiC/C경사기능재료 증착공정의 열역학적 해석)

  • 박진호;이준호;신희섭;김유택
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.12 no.2
    • /
    • pp.101-109
    • /
    • 2002
  • A complex chemical equilibrium analysis was performed to study the hot-wall CVD process of the SiC/C functionally gradient materials (FGM). Thermochemical calculations of the Si-C-H-Cl system were carried out, and the effects of process variables(deposition temperature, reactor pressure, C/[Si+C] and H/[Si+C] ratios in the source gas) on the composition of deposited layers and the deposition yield were investigated. The CVD phase diagrams of the SiC/C FGM deposition were obtained, and the optimum process windows were estimated from the results.

Hydrogen Production by Pyrolysis of Natural Gas : Thermodynamic Analysis (천연가스 열분해에 의한 수소 생산 : 열역학적 해석)

  • Yoon, Y.H.;Park, N.K.;Chang, W.C.;Lee, T.J.;Hur, T.;Lee, B.G.;Baek, Y.S.
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.13 no.1
    • /
    • pp.42-51
    • /
    • 2002
  • Methane can be converted directly to hydrogen by pyrolysis. The reaction is highly endothemic and heat must be supplied at high temperatures. Gibbs free energy minimization calculations have been carried out for the methane pyrolysis to determine equilibrium products. The calculation parameters are the temperature, the initial H/C ratio, the pressure and Gibbs energies of each substance. Methane, ethylene, acetylene, benzene, naphthalene, and hydrogen are the main products. Excluding hydrogen, it is observed that ethylene and aromatics(benzene+naphthalene) are predominant products below 1400K, whereas acetylene is significantly formed above 1400K. Hydrogen dilution increases the selectivities for ethylene and acetylene and decreases the selectivity for aromatics. Increasing the pressure also decreases the decomposition of methane.

Calculation of Mass-Heat Balance on the Iodine Crystallizer for SI Thermochemical Hydrogen Production Process (SI 열화학 수소 생산 공정 요오드 결정화기 열-물질 수지 계산)

  • Lee, Pyoung Jong;Park, Byung Heung
    • Journal of Institute of Convergence Technology
    • /
    • v.5 no.1
    • /
    • pp.1-5
    • /
    • 2015
  • SI thermochemical hydrogen production process achieves water splitting into hydrogen and oxygen through three chemical reactions. The process is comprised of three sections and one of them is HI decomposition into $H_2$ and $I_2$ called as Section III. The production of $H_2$ included processes involving EED for concentrating a product stream from Section I. Additionally an $I_2$ crystallization would be considered to reduce burden on EED by removing certain amount of $I_2$ out of a process stream prior to EED. In this study, the current thermodynamic model of SI process was briefly described and the calculation results of the applied Electrolytes NRTL model for phase equilibrium calculations was illustrated for ternary systems of Section III. We calculated temperature and heat duty of an $I_2$ crystallizer and heat duty of heaters using UVa model and heat balance equation of simulation tool. The results were expected to be used as operation information in optimizing HI decomposition process and setting up material balance throughout SI process.