• 제목/요약/키워드: Equiaxed microstructure

검색결과 130건 처리시간 0.021초

스트립캐스팅한 구상흑연주철 박판의 미세조직과 기계적 성질에 관한 연구 (A Study on the Microstructures and Mechanical Properties of Strip-Cast Ductile Cast Iron)

  • 최규택;박재영;나형용
    • 한국주조공학회지
    • /
    • 제19권1호
    • /
    • pp.77-83
    • /
    • 1999
  • Strip casting process, a new casting technology which makes thin strip of $0.5{\sim}5\;mm$ thickness directly from molten metal, has been dramatically developed for past 10 years and faced commercialization in the case of STS304 strip. In this study, ductile cast iron strip which is 1.1 mm thick and 100 mm wide is manufactured by the twin roll strip caster. Graphite and matrix structure of the strip can be controlled through heat treatments and the mechanical properties are examined. The microstructure of the as-cast strip consists of cementite and pearlite. Especially the equiaxed crystal zone of pearlite exists in the center region of the thickness due to the characteristics of the strip casting process. Matrix structure can be transformed into fully ferrite or ferrite/pearlite mixed structures by the different graphitization heat treatments. The heat-treated strip with ferrite/pearlite matrix structure showed higher hardness and tensile strength than that with full ferrite matrix structure.

  • PDF

모델 변천에 따른 가스터빈 1단 버켓의 손상경향 분석 (Analysis of Damage Trend for Gas Turbine 1st Bucket Related to the Change of Models)

  • 김문영;박상열;양성호;최희숙;고원;송국현
    • 대한기계학회논문집A
    • /
    • 제31권6호
    • /
    • pp.718-724
    • /
    • 2007
  • Some of gas turbine model of 7F-Class has constructed and is operating with units domestically. Non-destructive testing (NDT) is one of the methods being used to inspect damage $1^{st}$ stage bucket and review damage trends. We also analyze damage configuration and microstructure according to material and compare with pape of electric power research institute (EPRI). The damaged mode could be determined by leveraging failure analysis. Especially, configuration uprate of bucket is not only to prevent damage during operation but also avoid domestic manufacturing by the competitors. Modifications were mainly concentrated on surfaces such as cooling hole and bucket tips. Analyzing of bucket damage, the earlier model of 7F-Class used with one cycle with equivalent operation hour (EOH), has various cracking of the bucket surface. Bucket damage of new model is centered on tip area (54%) as analyzed by EPRI research. We conclude that improving bucket configuration would increase repair rate on the bucket tip.

분무성형법에 의한 Al 합금(AA2014) 대형봉상성형체 제조시 기공발생에 관한 연구 (A Study on the Creation of Porosity in Al Alloy(AA2014) Large Rod Preforms by Spray Forming)

  • 신돈수;윤의박
    • 한국주조공학회지
    • /
    • 제17권5호
    • /
    • pp.494-501
    • /
    • 1997
  • In order to manufacture large rod preforms of 2014 Al alloy with a good mechanical property by spray forming method, it was spray-formed at a droplet temperature of $715^{\circ}C$, a droplet flight distance of 400mm, and a spraying angle of $35^{\circ}$. The rod preforms were extruded at $397^{\circ}C$ with the die temperature of $420^{\circ}C$ under the hot extrusion ratio 21:1 and T6 heat treatment was performed. The 2014 Al alloys cast by hot top process were also extruded and heat-treated at the same condition as a reference material. Microstructural observation and tensile test were carried out to investigate the effects of extrusion on microstructure and mechanical property of spray-formed Al alloy. Spray-formed Al alloys had many porosities due to inappropriate process conditions such as long droplet flight distance and low droplet temperature but have fine equiaxed grain. These porosities were reduced with decreasing in grain size by hot extrusion. Ultimate tensile strength and yield strength of spray formed-extruded 2014 Al alloy were inferior to those of the normal cast-extruded 2014 Al alloy, but elongations were superior. The control of porosity was important to get spray formed preform with a good mechanical property.

  • PDF

등축정 Ti-6Al-4V 합금의 $\alpha,\;\beta$ 구성상의 고온변형거동 규명 (High temperature deformation behavior of $\alpha\;and\;\beta$ phase of Ti-6Al-4V alloy with an equiaxed microstructure)

  • 이유환;염종택;박노광;이종수;김정한
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.295-298
    • /
    • 2005
  • High temperature deformation behavior of $\alpha\;and\;\beta$ phase of Ti-6Al-4V was investigated within the framework of a self-consistent approach at various temperature ranges. To examine the flow behavior of u-phase, Ti-7.0Al-1.5V alloy was used, whose chemical composition is close to that of the $\alpha$ phase in Ti-6Al-4V at hot working temperatures. The flow stress of $\beta$ phase was predicted by using self-consistent approach. The flow stress of $\alpha$ phase was higher than that of $\beta$ phase above $750^{\circ}C$, while the $\beta$ phase revealed higher flow stress than a phase at $650^{\circ}C$. It was found that the relative strength and strain rate ratio between $\alpha\;and\;\beta$ phase significantly varied with temperature. From this approach, the mode for grain matrix deformation was proposed as a mixed type of both iso-stress and iso-strain rate modes.

  • PDF

ECAP 가공된 초미세 결정립 Al-4.4%Mg 합금의 동적 변형 및 파괴거동에 미치는 후-열처리 온도의 영향 (Effect of Subsequent Annealing Temperature on Dynamic Deformation and Fracture Behavior of Submicrocrystalline Al-4.4%Mg Alloy via Equal-Channel Angular Pressing)

  • 김양곤;고영건;신동혁;이종수;이성학
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2008년도 춘계학술대회 논문집
    • /
    • pp.427-430
    • /
    • 2008
  • The influence of subsequent annealing treatment on the dynamic deformation and the fracture behavior of submicrocrystalline Al-4.4%Mg alloy is investigated in this study. After inducing an effective strain of 8 via equal-channel angular pressing at $200^{\circ}C$, most of the grains are considerably reduced to nearly equiaxed grains of $0.3{\mu}m$ in size. With an increment of various subsequent heat treatments for 1 hour, resultant microstructures are found to be fairly stable at temperatures up to $200^{\circ}C$, suggesting that static recovery will be dominantly operative, whereas grain growth is pronounced above $250^{\circ}C$. The results of tensile tests show that yield and ultimate tensile strength decrease, but elongation-to-failure and strain hardening rate increase with an increase in annealing temperatures. The dynamic deformation and the fracture behavior retrieved with a series of torsional tests are explored with respect to annealed microstructures. Such mechanical response is analyzed in relation to resultant microstructure and fracture mode.

  • PDF

ECAP으로 제조된 초미세립 알루미늄 합금의 동적 변형거동에 미치는 어닐링 온도의 영향 (Effect of Annealing Temperature on Dynamic Deformation Behavior of Ultra-Fine-Grained Aluminum Alloys Fabricated by Equal Channel Angular Pressing)

  • 김양곤;고영건;신동혁;이종수;이성학
    • 대한금속재료학회지
    • /
    • 제46권9호
    • /
    • pp.563-571
    • /
    • 2008
  • The influence of annealing treatment on dynamic deformation behavior of ultra-fine grained aluminum alloys was investigated in this study. After equal-channel angular pressing at $200^{\circ}C$, most of the grains were considerably reduced to nearly equiaxed grains of $0.3{\mu}m$ in size. With an increment of various annealing treatments for 1 hour, resultant microstructures were found to be fairly stable at temperatures up to $200^{\circ}C$, suggesting that static recovery would be dominantly operative, whereas grain growth was pronounced above $250^{\circ}C$. The tensile test results showed that yield and ultimate tensile strengths decreased, but elongation-to-failure and strain hardening rate increased with increasing annealing temperature. The dynamic deformation behavior retrieved with a series of torsional tests was explored with respect to annealed microstructures. Such mechanical response was analyzed in relation to resultant microstructure and fracture mode.

핵연료피복관용 Zr 합금의 부식특성 및 산화막 미세구조 (Corrosion Characteristics and Oxide Microstructure of Zirconium Alloys for Nuclear Fuel Cladding)

  • 정용환;백종혁;김선재;김경호;최병권;정연호
    • 한국재료학회지
    • /
    • 제8권4호
    • /
    • pp.368-374
    • /
    • 1998
  • Zr합금의 부식거동을 평가하기 위하여 여러 가지 1족 알칼리 수산화물 용액 (LiOH, NaOH, KOH, RbOH, CsOH)에서 autoclave를 이용하여 300일까지 부식시험을 실시하였다. 산화막 특성은 TEM을 이용하여 천이전과 천이후에 동일 산화막두께를 갖도록 준비된 부식시편에 대해 수행되었다. 실험결과를 고려할 때 금속이온은 부식과정에서 매우 중요한 역할을 하는 것으로 사료된다. 즉 $Li^+$$Zr^{4+}$ 치환하여 산소농도는 증가하고 부식은 가속되는데 산화막 내부의 barrier layer에서 $Li^-$치환이 부식을 제어하는 것으로 판단된다.동일 두께의 산화막 일지라도 산화막의 구조는 모두 다르다. 32.5mmol LiOH에서 생성된 산화막온 천이전,후에 관계 없이 많은 기공이 함유된 등축정 구조를 갖는다. 반면에 NaOH에서 생성된 산화막은 천이전에는 주상정 구조를 갖지만 천이후에는 다공성의 등축정 구조로 바뀐다. KOH용액에서는 천이전에는 주상정과 비정질 산화막의 이중 구조를 갖지만 천이후에는 비정질 산화막은 사라직 전반적으로 주상정 구조가 형성된다. 부식거동과 산화막 관찰로부터 금속이온의 산화막내 치환이 부식속도와 산화막 미세구조를 지어한다는 것을 알 수 있었다.

  • PDF

고온단조에 의한 액상소결 탄화규소의 미세구조 및 기계적 특성 (Microstructure and mechanical properties in hot-forged liquid-phase-sintered silicon carbide)

  • 노명훈;김원중
    • 한국산학기술학회논문지
    • /
    • 제11권6호
    • /
    • pp.1943-1948
    • /
    • 2010
  • 평균 입도의 크기가 ${\sim}1.7\;{\mu}m$${\sim}30\;nm$인 두 종류의 탄화규소 분말을 7 wt% $Y_2O_3$, 2 wt% $Al_2O_3$, 1 wt% MgO를 소결 첨가제로 사용하여 $1800^{\circ}C$에서 1 시간동안 Ar 분위기에서 압력을 가하여 고온가압소결을 하였다. 고온 가압소결한 시편은 $1950^{\circ}C$에서 6 시간동안 Ar 분위기에서 40 MPa의 압력을 가하여 고온 단조 하였다. 두 시편 모두 고온가압소결 후의 미세구조는 등방형 모양의 결정립을 나타내었으며, 고온 단조 후에 결정립 성장이 나타났다. 평균 입도의 크기가 작은 탄화규소 분말로 소결한 시편의 결정립의 크기가 고온 단조 후에도 더 작은 결정립을 나타내었다. 고온 단조 후의 압력축과 평행한 방향과 수직한 방향의 미세구조는 비슷하였다. 탄화규소의 $\beta$에서 $\alpha$로의 상변태가 활발하게 발생하지 않아 집합조직의 발달은 발견되지 않았다. 평균 입도의 크기가 큰 탄화규소 분말로 제작된 시편의 파괴인성 (${\sim}3.9\;MPa{\cdot}m^{1/2}$), 경도 (~ 25.2 GPa), 굽힘강도가 (480 MPa) 평균 입도의 크기가 작은 탄화규소로 제작된 시편보다 높게 나타났다.

저탄소강에서 Planetary 볼밀링에 의한 나노결정 페라이트의 형성 (Formation of Nanocrystalline Ferrite by Planetary Ball Milling in a Low Carbon Steel)

  • 이혜정;이상우;오명훈
    • 열처리공학회지
    • /
    • 제18권1호
    • /
    • pp.29-40
    • /
    • 2005
  • Formation of nanocrystalline ferrite was investigated using milled powders obtained by planetary ball milling of chips, which were made by high speed mechanical cutting of a low carbon steel(0.15%C-1.1%Mn-0.01%Ti). After 4 hour milling the chips were changed to powders of $50{\mu}m$ in average size, and with increasing milling time the powders were refined to about $3{\mu}m$ for 128 hour and showed more equiaxed shapes. Nanocrystalline(nc) region appeared in the surfaces of powders milled for 1 hour, and the 4 hour milled powders were almost filled with nc region. Hardness of nc region was much higher than that of work-hardened(WH) region. With increasing milling time, ferrite and cementite in pearlite were severely deformed and lamellar spacing was decreased, and then cementites began to disappear after 4 hour milling due to dissolution into ferrite. Deformation bands formed in lightly work-hardened region showed large width and similar crystallographic orientations. Spacing of deformation bands was decreased with deformation and the layered microstructure consisting of narrow deformation bands subdivided into variously oriented small grains was formed by more deformation, and eventually this structure seemed to be evolved to the nc structure by further deformation. It is also conjectured the growth of nc ferrite grains occurred through the coalescence of nanocrystalline ferrites rather than the nucleation and growth of recrystallized grains.

Microstructural Evolution of X20CrMoV12.1 Steel upon Short-term Creep Rupture Test

  • Hino, Mariko;He, Yinsheng;Li, Kejian;Chang, Jungchel;Shin, Keesam
    • Applied Microscopy
    • /
    • 제43권4호
    • /
    • pp.164-172
    • /
    • 2013
  • In this work, microstructural and hardness evolution of the X20 steel upon short-term creep test ($550^{\circ}C$ to $650^{\circ}C$, $180^{\circ}C$ to 60 MPa) was studied by using scanning electron microscope, electron backscattered diffraction, and transmission electron microscope, microhardness tester. After creep rupture, gauge and grip part of the specimens were microstructurally analyzed. Creep at the $650^{\circ}C$/60 MPa resulted in a rupture at 1,460 hours with growth of lath width from 1.31 to $2.87{\mu}m$ and a grain growth with a more equiaxed feature. There is a close relationship between Microhardness and lath width. The formation and coarsening of Laves phase, which was observed up to $600^{\circ}C$ of creep temperature, was accelerated by the applied stress. Slight coarsening of the $M_{23}C_6$ was observed in the $550^{\circ}C$ and $600^{\circ}C$ crept or aged specimens. The coarsening of $M_{23}C_6$ depended on the temperature, where specimens crept at $650^{\circ}C$ showed higher growth rate. The microstructural evolution of X20 after short-term creep test was extensively discussed in relation to the long-term creep/aging test reported in literatures.