• Title/Summary/Keyword: Equiaxed grains

Search Result 95, Processing Time 0.024 seconds

High-Temperature Deformation Behavior of Ti3Al Prepared by Mechanical Alloying and Hot Pressing

  • Han, Chang-Suk;Jin, Sung-Yooun;Kwon, Hyuk-Ku
    • Korean Journal of Materials Research
    • /
    • v.30 no.2
    • /
    • pp.57-60
    • /
    • 2020
  • Titanium aluminides have attracted special interest as light-weight/high-temperature materials for structural applications. The major problem limiting practical use of these compounds is their poor ductility and formability. The powder metallurgy processing route has been an attractive alternative for such materials. A mixture of Ti and Al elemental powders was fabricated to a mechanical alloying process. The processed powder was hot pressed in a vacuum, and a fully densified compact with ultra-fine grain structure consisting of Ti3Al intermetallic compound was obtained. During the compressive deformation of the compact at 1173 K, typical dynamic recrystallization (DR), which introduces a certain extent of grain refinement, was observed. The compact had high density and consisted of an ultra-fine equiaxial grain structure. Average grain diameter was 1.5 ㎛. Typical TEM micrographs depicting the internal structure of the specimen deformed to 0.09 true strain are provided, in which it can be seen that many small recrystallized grains having no apparent dislocation structure are generated at grain boundaries where well-developed dislocations with high density are observed in the neighboring grains. The compact showed a large m-value such as 0.44 at 1173 K. Moreover, the grain structure remained equiaxed during deformation at this temperature. Therefore, the compressive deformation of the compact was presumed to progress by superplastic flow, primarily controlled by DR.

Effect of Zone Annealing Velocity on the directional Recrystallization in a Ni base Oxide Dispersion Strengthened Alloys (Ni계 산화물 분산 강화 합금의 방향성 재결정에 미치는 존 어닐링 속도의 영향)

  • Kim, Young-Kyun;Yoon, Seong-June;Park, Jong-Kwan;Kim, Hwi-Jun;Kong, Man-Sik;Lee, Kee-Ahn
    • Journal of Powder Materials
    • /
    • v.25 no.4
    • /
    • pp.331-335
    • /
    • 2018
  • This study investigates the directional recrystallization behavior of Ni based oxide dispersion strengthened (ODS) alloy according to the zone annealing velocity. The zone annealing temperature is set as $1390^{\circ}C$, while the zone velocities are set as 2.5, 4, 6, and 10 cm/h, respectively. The initial microstructure observation of the as-extruded sample shows equiaxed grains of random orientation, with an average grain size of 530 nm. On the other hand, the zone annealed samples show a large deviation in grain size depending on the zone velocities. In particular, grains with a size of several millimeters are observed at 2.5-cm/h zone velocity. It is also found that the preferred orientation varies with the zone annealing velocity. On the basis of these results, this study discusses the role of zone velocities in the directional recrystallization of Ni base ODS alloy.

A Study on the Mechanical Properties and Contact Damage of Silicon Nitrides : 1. Effect of ${\alpha}/{\beta}$ Phase Fraction (질화규소의 기계적 성질 및 접촉 손상: I. ${\alpha}/{\beta}$ 상분율의 영향)

  • 이승건
    • Journal of Powder Materials
    • /
    • v.5 no.1
    • /
    • pp.15-21
    • /
    • 1998
  • The effect of $\alpha$/$\beta$ phase on the mechanical properties and contact damage of silicon nitrides $Si_3N_4$) was investigated. Silicon nitride materials were prepared from two starting powders, at selective increasing hot-pressing temperatures to coarsen the microstructures: (i) from relatively coarse $\alpha$-phase powder, essentially equiaxed $\alpha$-$Si_3N_4$ grains, with limited, slow transformation to $\beta$-$Si_3N_4$ grain; (ii) from relatively fine $\alpha$-phase powder, a more rapid transformation to $\beta$-$Si_3N_4$, with attendant grain elongation. The resulting micro-structure thereby provided a spectrum of $\alpha$/$\beta$ phase ratios, grain sizes, and grain shapes. Fracture strength, hardness, and toughness were measured, and contact damage and strength degradation after indentation were investigated by Hertzian indentation using spherical indenter. A brittle to ductile transition in $Si_3N_4$ depended on $\alpha$/$\beta$ phase ratio as well as grain size. Silicon nitride with elongated $\beta$ grains showed a superior, contact damage resistance.

  • PDF

Effect of Hot-compaction Temperature on the Magnetic Properties of Anisotropic Nanocrystalline Magnets

  • Li, W.;Wang, H.J.;Lin, M.;Lai, B.;Li, D.;Pan, W.
    • Journal of Magnetics
    • /
    • v.16 no.3
    • /
    • pp.300-303
    • /
    • 2011
  • The effect of the hot-compaction temperature on the microstructure and magnetic properties of anisotropic nanocrystalline magnets was investigated. The hot-compaction temperature was found to impact both the magnetic properties and the microstructure of die-upset magnets. The remanence of the isotropic precursor increases slightly with the improved hot-compaction temperature, and the grains start to grow on the flake boundary at higher hot-compaction temperatures. After hot deformation, it was found that the change in the magnetic properties was the inverse of that observed with the hot-compaction temperature. Microstructural investigation showed that die-upset magnets inherit the microstructural characteristics of their precursor. For the die-upset magnets, hot pressed at low temperature, scarcely any abnormal grain growth on the flake boundary can be seen. For those hot pressed at higher temperatures, however, layers with large equiaxed grains could be observed, which accounted for the poor alignment during the hot deformation, and thus the poor magnetic properties.

Electrical properties of S$SrBi_{2x}Ta_2O_9$ thin films with Bi content (Bi 함량에 따른 $SrBi_{2x}Ta_2O_9$ 박막의 전기적 특성)

  • 연대중;권용욱;박주동;오태성
    • Journal of the Korean Vacuum Society
    • /
    • v.8 no.3A
    • /
    • pp.224-230
    • /
    • 1999
  • $SrBi_{2x}Ta_2O_9$ (SBT) thin films were prepared on platinized silicon substrates by MOD process, and their ferroelectric and leakage current characteristics were investigated. The grain size of the MOD derived SBT films increased with increasing the BI/Ta mole ration. Although the SBT films with x of 0.8~1.2 were composed of the equiaxed grains, the elongated grains were also observed for the SBT films with x of 1.4 and 1.6. The SBT film with x of 1.2 exhibited the optimum ferroelectric properties of 2PR : 9.79 $\muC/\textrm{cm}^2$ and Ec : 24.2kV/cm at applied voltage of 5V. The leakage current density of the SBT films increased with increasing the BI/Ta mole ratio. With post annealing process, 2Pr and $E_c$of the SBT film with x of 1.2 increases 11.3 $\muC/\textrm{cm}^2$ and 39.6kV/cm, respectively. decrement of the leakage current density by post annealing process increased remarkably with increasing the Bi/ta mole ratio, and the SBT film with x=1.6 exhibited the lowest leakage current density after post annealing process.

  • PDF

Effect of Subsequent Annealing Temperature on Dynamic Deformation and Fracture Behavior of Submicrocrystalline Al-4.4%Mg Alloy via Equal-Channel Angular Pressing (ECAP 가공된 초미세 결정립 Al-4.4%Mg 합금의 동적 변형 및 파괴거동에 미치는 후-열처리 온도의 영향)

  • Kim, Y.G.;Ko, Y.G.;Shin, D.H.;Lee, C.S.;Lee, S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.427-430
    • /
    • 2008
  • The influence of subsequent annealing treatment on the dynamic deformation and the fracture behavior of submicrocrystalline Al-4.4%Mg alloy is investigated in this study. After inducing an effective strain of 8 via equal-channel angular pressing at $200^{\circ}C$, most of the grains are considerably reduced to nearly equiaxed grains of $0.3{\mu}m$ in size. With an increment of various subsequent heat treatments for 1 hour, resultant microstructures are found to be fairly stable at temperatures up to $200^{\circ}C$, suggesting that static recovery will be dominantly operative, whereas grain growth is pronounced above $250^{\circ}C$. The results of tensile tests show that yield and ultimate tensile strength decrease, but elongation-to-failure and strain hardening rate increase with an increase in annealing temperatures. The dynamic deformation and the fracture behavior retrieved with a series of torsional tests are explored with respect to annealed microstructures. Such mechanical response is analyzed in relation to resultant microstructure and fracture mode.

  • PDF

Annealing Characteristics of Oxygen Free Copper Severely Deformed by Accumulative Roll-Bonding Process (ARB법에 의해 강소성가공된 무산소동의 어닐링 특성)

  • Lee Seong-Hee;Cho Jun;Lee Chung-Hyo;Han Seung-Zun;Lim Cha-Yong
    • Korean Journal of Materials Research
    • /
    • v.15 no.9
    • /
    • pp.555-559
    • /
    • 2005
  • An oxygen free copper severely-deformed by eight cycles (an equivalent strain of $\~6.4$) of accumulative roll-bonding (ARB) was annealed at various temperatures ranging from 100 to $300^{\circ}C$. The annealed copper was characterized by transmission electron microscopy (TEM) and tensile & hardness test. TEM observation revealed that the ultrafine grains developed by the ARB still remained up to $150^{\circ}C$, however above $200^{\circ}C$ they were replaced by equiaxed and coarse grains due to an occurrence of the static recrystallization. Tensile strength and hardness of the copper decreased slightly with the annealing temperature up to $150^{\circ}C$, however they dropped largely above $200^{\circ}C$. Annealing characteristics of the copper were compared with those of a commercially pure aluminum processed by ARB and subsequently annealed.

Effect of Annealing Temperature on Dynamic Deformation Behavior of Ultra-Fine-Grained Aluminum Alloys Fabricated by Equal Channel Angular Pressing (ECAP으로 제조된 초미세립 알루미늄 합금의 동적 변형거동에 미치는 어닐링 온도의 영향)

  • Kim, Yang Gon;Ko, Young Gun;Shin, Dong Hyuk;Lee, Chong Soo;Lee, Sunghak
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.9
    • /
    • pp.563-571
    • /
    • 2008
  • The influence of annealing treatment on dynamic deformation behavior of ultra-fine grained aluminum alloys was investigated in this study. After equal-channel angular pressing at $200^{\circ}C$, most of the grains were considerably reduced to nearly equiaxed grains of $0.3{\mu}m$ in size. With an increment of various annealing treatments for 1 hour, resultant microstructures were found to be fairly stable at temperatures up to $200^{\circ}C$, suggesting that static recovery would be dominantly operative, whereas grain growth was pronounced above $250^{\circ}C$. The tensile test results showed that yield and ultimate tensile strengths decreased, but elongation-to-failure and strain hardening rate increased with increasing annealing temperature. The dynamic deformation behavior retrieved with a series of torsional tests was explored with respect to annealed microstructures. Such mechanical response was analyzed in relation to resultant microstructure and fracture mode.

The Effects of Centrifugal Casting Conditions on the Structure and Mechanical Properties in Fabrication Development of Super Heat-Resisting Steel Pipe of HP Alloy Modified with Nb (Nb을 첨가한 HP 초내열강관의 제조개발에 필요한 원심주조 조건이 조직과 기계적성질에 미치는 효과)

  • Choi, Sang-Ho
    • Journal of Korea Foundry Society
    • /
    • v.14 no.6
    • /
    • pp.566-575
    • /
    • 1994
  • The effects of varying the pouring temperature and the die preheating temperature in producing centrifugally cast HP alloy modified with Nb was evaluated on the basis of the resultant macrostructure, microstructure and hardness of these castings. Increased die preheating temperatures and pouring temperatures resulted in an increase in the thickness of the columnar dendritic zone, the primary and secondary dendrite arm spacing and the thickness of the zone of porosity at the casting I.D.(inner diameter). Lower die preheating temperature and pouring temperatures result in increased grain fineness and an increased zone of equiaxed grains. A higher hardness was achieved toward the casting O.D.(outer diameter) compared to the casting I.D., attributable to alloy segregation toward the casting I.D. and segregation differences resulting from reduced solidification cooling rates toward the casting I.D. Also, a higher hardness was realized at the cold end of the casting attributed to a more uniform distribution of carbides.

  • PDF

Effect of Deposit Conditions on Composition of Sn-Zn Alloy Deposits (Sn-Zn합금도금 조성에 미치는 도금조건의 영향)

  • 배대철;김현태;장삼규;조경목
    • Journal of the Korean institute of surface engineering
    • /
    • v.34 no.6
    • /
    • pp.537-544
    • /
    • 2001
  • In the present study, tin-zinc alloys were coated on a cold-rolled steel sheet with variations of electrolyte concentration, additives quantity and current density employing the Hull cell and circulation cell simulator. With an addition of additives of 2m1/L, tin-zinc deposits containing 10 to 40 percent Zn revealed a good surface appearance with weak acidic electrolytes. The organic additives suppressed the Sn deposition rate and thus increased the zinc contents in tin-zinc coating layers. The zinc contents in the tin-zinc coating layers depended almost linearly on the concentrations of metal ions of tin and zinc. Temperature of the electrolyte affected the composition tin-zinc coating layer. However, the concentration of complexants revealed little effectiveness. The surface morphology of tin-zinc coating showed dense tin and zinc phases with fine equiaxed grains with the high current density.

  • PDF