• Title/Summary/Keyword: Equi-biaxial Stress

Search Result 14, Processing Time 0.016 seconds

Mechanical Properties Evaluation of Natural and Synthetic Rubber (천연 및 합성고무의 기계적 물성 평가)

  • Park, H.S.;Woo, C.S.
    • Elastomers and Composites
    • /
    • v.42 no.1
    • /
    • pp.32-46
    • /
    • 2007
  • Mechanical properties of rubber material are very important in design procedure to assure the safety and reliability of the rubber components. In this paper, the material test and accelerated heat aging test were carried out. In order to investigate the effects of heat-aging on the material properties, hardness, elongation, stress-strain curves and dynamic characteristics were obtained from various test conditions. Also, rubber material coefficients were determined by both the uniaxical and equi-biaxial tensile tests.

Mechanical Testing and Nonlinear Material Properties for Finite Element Analysis of Rubber Components (고무부품의 유한요소해석을 위한 재료시험 및 비선형 재료물성에 관한 연구)

  • Kim, Wan-Doo;Kim, Wan-Soo;Kim, Dong-Jin;Woo, Chang-Soo;Lee, Hak-Joo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.6
    • /
    • pp.848-859
    • /
    • 2004
  • Mechanical testing methods to determine the material constants for large deformation nonlinear finite element analysis were demonstrated for natural rubber. Uniaxial tension, uniaxial compression, equi-biaxial tension and pure shear tests of rubber specimens are performed to achieve the stress-strain curves. The stress-strain curves are obtained after between 5 and 10 cycles to consider the Mullins effect. Mooney and Ogden strain-energy density functions, which are typical form of the hyperelastic material, are determined and compared with each other. The material constants using only uniaxial tension data are about 20% higher than those obtained by any other test data set. The experimental equations of shear elastic modulus on the hardness and maximum strain are presented using multiple regression method. Large deformation finite element analysis of automotive transmission mount using different material constants is performed and the load-displacement curves are compared with experiments. The selection of material constant in large deformation finite element analysis depend on the strain level of component in service.

A Study on Finite Element Analysis and Aging Test for Automotive Grommet (자동차 그로멧의 유한요소해석 및 노화시험에 대한 연구)

  • Lee, Seong-Beom;Yeom, Sang-Hoon;Han, Chang-Yong;Woo, Chang-Su
    • Elastomers and Composites
    • /
    • v.47 no.3
    • /
    • pp.201-209
    • /
    • 2012
  • Grommet is one of the Automotive rubber components and is made from EPDM(Ethylene Propylene Diene monomer M-class) rubber and the nonlinear hyperelastic material properties of rubber are important to predict the behavior of rubber product. In this study, the stable stress-strain relations were obtained from the uni-axial tension test and the equi-biaxial tension test. Finite element analysis for grommet was carried out and heat aging test for the lifetime prediction of grommet was introduced.

Effects of Thermal Aging on Properties and Life-time Prediction of NBR and EPDM Vulcanizates (열 노화에 따른 NBR과 EPDM 가황물의 물성변화 및 노화수명 예측)

  • Woo, C.S.;Choi, S.S.
    • Elastomers and Composites
    • /
    • v.40 no.2
    • /
    • pp.119-127
    • /
    • 2005
  • Material characteristics and lifetime evaluation are very important in design procedure to assure the safety and reliability of the rubber components. In this paper, the material test and accelerated heat aging test were carried out to predict the useful life of NBR and EPDM rubber mount for a compression motor which is used in a refrigerator. In order to investigate the effects of heat-aging on the material properties, crosslink density, modulus at 100% strain, stress-strain curves were obtained from uniaxial and equi-biaxial tensile tests. The change of compression set were used for assessment of the useful life and the time to threshold value were plotted against the reciprocal of absolute temperature to give the Arrhenius plot. The useful life at variable temperatures are obtained in the Arrhenius relationship.