• Title/Summary/Keyword: Equations of state

Search Result 1,474, Processing Time 0.028 seconds

Transport of Water through Polymer Membrane in Proton Exchange Membrane Fuel Cells (고분자전해질 연료전지에서 고분자막을 통한 물의 이동)

  • Lee, Daewoong;Hwang, Byungchan;Lim, Daehyun;Chung, Hoi-Bum;You, Seung-Eul;Ku, Young-Mo;Park, Kwonpil
    • Korean Chemical Engineering Research
    • /
    • v.57 no.3
    • /
    • pp.338-343
    • /
    • 2019
  • The water transport and water content of the electrolyte membrane greatly affect the performance of the membrane in PEMFC(Proton Exchange Membrane Fuel Cell). In this study, the parameters (electroosmotic coefficient, water diffusion coefficient) of polymer membranes for water transport were measured by a simple method, and water flux and ion conductivity were simulated by using a model equation. One dimensional steady state model equation was constructed by using only the electro-osmosis and diffusion as the driving force of water transport. The governing equations were simulated with MATLAB. The electro-osmotic coefficient of $144{\mu}m$ thick polymer membranes was measured in hydrogen pumping cell, the value was 1.11. The water diffusion coefficient was expressed as a function of relative humidity and the activation energy for water diffusion was $2,889kJ/mol{\cdot}K$. The water flux and ion conductivity results simulated by applying these coefficients showed good agreement with the experimental data.

Effects of Body Build on Metabolic and Physiological Function in Men and Athletes - 1. Especially on the Metabolic Function -

  • Lee, Ok-Hee;Lim, Soon-Gill;Lee, Jung-Hee
    • Nutritional Sciences
    • /
    • v.2 no.2
    • /
    • pp.93-101
    • /
    • 1999
  • The aim of this study was to investigate influence of body build on body composition, energy metabolic state and insulin concentration of blood. 29 male athletes and 36 male non-athletic students were recruited for the study. Anthropometry including chest depth and breadth, fat mass, fat fee mass, tricep skinfold thickness were measured. fasting glucose, lactate, triglyceride, fee fatty acid, and insulin concentration in serum were measured . Body build was assessed using metric index, which calculated by regression equations of Mohr and Greil. The athletic and non-athletic students were allocated to 3 body build, that is leptomorph, mesomorph, and pyknomorph. Resting metabolic rate was calculated. Respiratory quotient was determined through ratio of measured VO$_2$, and V$CO_2$. Most non-athletes have a leptomorphic body build, in contrast to athletes mesomorphic type. The body build type influenced body composition differently between non-athletic group and athletic group. Weight, body mass index, body fat mass and fat mass proportion (%), and fat-free mass increased from leptomorph to pyknormorph in non-athletic group. Pyknormorphic athletes have a significant higher body mass index, fat mass, fat free mass than other body build type. Serum glucose, triglyceride, lactate, insulin showed significant differences only in non-athletic group between leptomorph and mesomorph. RMR increased significantly from leptomorph to mesomorph in non-athletes. There was no significant difference of RQ among 3 body build types in both athletes and non-athletes. This study gives a coherent data on body build and body composition for athletes and non-athletes students. The influence of body builds on energy metabolic status of serum was different between athletes and non-athletes.

  • PDF

Influence of Dietary Salinomycin on Feeding-induced Variations of Glucose Kinetics and Blood Volatile Fatty Acids and Insulin Concentrations in Sheep Fed a High-roughage Diet

  • Fujita, Tadahisa;Itoh, Takahiro;Majima, Hiroya;Sano, Hiroaki
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.3
    • /
    • pp.365-372
    • /
    • 2007
  • This study was conducted to determine effects of salinomycin (SL) on feeding-induced changes in glucose kinetics and blood VFA concentrations in sheep fed a high-roughage diet. Four sheep were fed the diet with or without 20 mg/kg diet of SL once daily for 21 d. Glucose entry and utilization rates were determined during the prefeeding and 3 h postfeeding periods, using a [$^{13}C_6$]glucose dilution method and non-steady state equations. Ruminal characteristics and concentrations of blood VFA, plasma glucose and insulin were also measured during the same periods. A feeding-induced increase in ruminal total VFA concentration tended to be inhibited (p<0.10) with SL, although ruminal pH was unaffected (p>0.10) with SL or by feeding. Salinomycin decreased (p<0.05) acetate proportion and increased (p<0.05) propionate proportion in the rumen, but did not modify these changes in response to feeding (p>0.10). A feeding-induced increase in blood acetate concentration was attenuated (p<0.05) with SL. Salinomycin tended to increase (p<0.10) blood propionate concentration without modifying its response patterns to feeding (p>0.10). Plasma concentrations of glucose or insulin were unaffected (p>0.10) with SL. Salinomycin tended to enhance (p<0.10) glucose entry and utilization rates. Feeding also enhanced (p<0.01) both rates, whereas their interactive effect was not detected (p>0.10). We conclude that SL possibly enhances whole body glucose entry and utilization with an increase in blood propionate concentration in sheep given a high-roughage diet, although SL does not appear to affect their responses to feeding.

Numerical Study on Mode Transition in a Scramjet Engine (스크램제트 엔진에서의 모드 천이에 관한 수치해석 연구)

  • Ha, Jeong Ho;Das, Rajarshi;Ladeinde, Foluso;Kim, Tae Ho;Kim, Heuy Dong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.21 no.6
    • /
    • pp.21-31
    • /
    • 2017
  • In the present study, theoretical and numerical analyses have been carried out to investigate the detailed flow characteristics during the mode transition. The theoretical analysis rearranged the knowledge of gasdynamics and the previous studies, and the numerical analysis has conducted to solve the 2D unsteady compressible Navier-Stokes equations with a fully implicit finite volume scheme. To validate the numerical analysis, the experiment was compared with it. The total temperature at the inlet of isolator and the hydrogen fuel equivalent ratio were changed to investigate their effects on the mode transition phenomenon. As the results, the numerical analysis reproduced well the experiment qualitatively, the increment in the hydrogen fuel equivalent ratio induced the scram-mode to ram-mode transition which is discontinuous with a non-allowable region, and the variation in the total temperature changed the boundary of the mode transition.

Thermal Analysis of Prelaunch Transients in Cryogenic Oxidizer Tank of Liquid Propulsion Rocket (발사대기 중인 액체추진 로켓의 극저온 산화제 탱크 내 비정상 열해석)

  • Kim, Kyoung-Hoon;Ko, Hyung-Jong;Kim, Kyoung-Jin;Cho, Kie-Joo;Oh, Seung-Hyub
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.12 no.4
    • /
    • pp.33-41
    • /
    • 2008
  • The prelaunch thermal transients in the cryogenic oxidizer tank of liquid propulsion rocket subjected to uniform heat flux from outside are numerically analyzed through thermodynamic equations and heat and mass transfer relations. The prelaunch stage is assumed to be composed of five idealized sub-stages including pressurization process by helium gas injection. The Peng-Robinson equation of state is utilized in the lumped analysis of ullage gas. The liquid region is divided into a number of horizontal layers of uniform properties to account for the thermal stratification. The computational result for the typical case shows that the temperature rise of liquid oxidizer is less than 1K and the adsorbed helium into the liquid is approximately 10g.

Deep learning-based AI constitutive modeling for sandstone and mudstone under cyclic loading conditions

  • Luyuan Wu;Meng Li;Jianwei Zhang;Zifa Wang;Xiaohui Yang;Hanliang Bian
    • Geomechanics and Engineering
    • /
    • v.37 no.1
    • /
    • pp.49-64
    • /
    • 2024
  • Rocks undergoing repeated loading and unloading over an extended period, such as due to earthquakes, human excavation, and blasting, may result in the gradual accumulation of stress and deformation within the rock mass, eventually reaching an unstable state. In this study, a CNN-CCM is proposed to address the mechanical behavior. The structure and hyperparameters of CNN-CCM include Conv2D layers × 5; Max pooling2D layers × 4; Dense layers × 4; learning rate=0.001; Epoch=50; Batch size=64; Dropout=0.5. Training and validation data for deep learning include 71 rock samples and 122,152 data points. The AI Rock Constitutive Model learned by CNN-CCM can predict strain values(ε1) using Mass (M), Axial stress (σ1), Density (ρ), Cyclic number (N), Confining pressure (σ3), and Young's modulus (E). Five evaluation indicators R2, MAPE, RMSE, MSE, and MAE yield respective values of 0.929, 16.44%, 0.954, 0.913, and 0.542, illustrating good predictive performance and generalization ability of model. Finally, interpreting the AI Rock Constitutive Model using the SHAP explaining method reveals that feature importance follows the order N > M > σ1 > E > ρ > σ3.Positive SHAP values indicate positive effects on predicting strain ε1 for N, M, σ1, and σ3, while negative SHAP values have negative effects. For E, a positive value has a negative effect on predicting strain ε1, consistent with the influence patterns of conventional physical rock constitutive equations. The present study offers a novel approach to the investigation of the mechanical constitutive model of rocks under cyclic loading and unloading conditions.

Effect of n-Butanol on the Micellization of DBS/Brij 35 Mixed Surfactant Systems (DBS/Brij 35 혼합계면활성제의 미셀화에 미치는 n-부탄올 효과)

  • Lee, Byeong-Hwan;Park, In-Jeong
    • Journal of the Korean Chemical Society
    • /
    • v.50 no.5
    • /
    • pp.355-361
    • /
    • 2006
  • The critical micelle concentration (CMC) and the counterion binding constant (B) in a mixed micellar state of the sodium dodecylbenzenesulfonate (DBS) with the polyoxyethylene(23) lauryl ether (Brij 35) at 25oC in water and aqueous solutions of n-butanol (0.1M, 0.2M, and 0.3M) were determined as a function of a1 (the overall mole fraction of DBS) by the use of electric conductivity method and surface tensiometer method. Various thermodynamic parameters (Xi, i, Ci, aiM, , and Hmix) were calculated by means of the equations derived from the nonideal mixed micellar model. The effect of n-butanol on the micellization of the DBS/Brij 35 mixtures has been also studied by analyzing the measured and calculated thermodynamic parameters.

Mixed Micellar Properties of DPC with Other Cationic Surfactants (DTAB, TTAB, and CDEAB) (DPC와 다른 양이온성 계면활성제(DTAB, TTAB 및 CDEAB)와의 혼합마이셀화에 관한 연구)

  • Lee, Byung Hwan
    • Journal of the Korean Chemical Society
    • /
    • v.42 no.5
    • /
    • pp.519-525
    • /
    • 1998
  • The critical micelle concentration $(CMC^{\ast})$ and the counterion binding constant (B) in a micellar state of the mixed surfactant systems of dodecylpyridinium chloride (DPC) with dodecyltrimethylammonium bromide (DTAB), tetradecyltrimethylammonium bromide (TTAB), and cetyldimethylethylammonium bromide (CDEAB) were determined at $25^{\circ}C$ as a function of ${\alpha}_1$ (the overall molc fraction of DPC) by the use of electric conductivity method. Various thermodynamic parameters $(X_{i},\;{\gamma}_{I},\;C_{i},\;a^{M}_{i}, \beta,\;{\Delta}H_{mix}, \;and\; {\Delta}G^{o}_{m})$ for the micellization of DPC/DTAB, DPC/TTAB, and DPC/CDEAB mixtures were calculated and analyzed for each system by means of the equations derived from the pseudophase separation model. The results show that the DPC/DTAB mixed system has the greatest deviation and the DPC/CDEAB mixed system has the smallest deviation from the ideal mixed micellar model.

  • PDF

Speed, Depth and Steering Control of Underwater Vehicles with Four Stem Thrusters - Simulation and Experimental Results (네 대의 주 추진기를 이용한 무인잠수정의 속도, 심도 및 방위각 제어 - 시뮬레이션 및 실험)

  • JUN BONG-HUAN;LEE PAN-MOOK;LI JI-HONG;HONG SEOK-WON;LEE JIHONG
    • Journal of Ocean Engineering and Technology
    • /
    • v.19 no.2 s.63
    • /
    • pp.67-73
    • /
    • 2005
  • This paper describes depth, heading and speed control of an underwater vehicle that has four stern thrusters of which forces are coupled in the diving and, steering motion, as well as the speed of the vehicle. The optimal linear quadratic controller is designed based on a linearized- state space model, developed by combining the dynamic equations of speed, steering and diving motion. The designed controller gives provides an optimal thrust distribution, minimizing the given performance index to control speed, depth and heading simultaneously. To validate the performance of the controller, a simulation and tank-test are carried out with DUSAUV (Dual Use Semi-Autonomous Underwater Vehicle), developed by KORDI as a test-bed for testing new underwater technologies. Optimal gains of the controller are tuned, using a computer simulation environment with a nonlinear 6-DOF numerical DUSAUV model, developed by PMM (Planner Motion Mechanism) test. To verify the performance of the presented controller in experiment, a tank-test with DUSAUV is carried out in the ocean engineering basin in KORDI. The experimental results are also compared with the simulation results to investigate the accordance of the numerical and the real mode.

A Jet Strobe Signal Timing Control of Ink Jet Printer Head for Enhancement of Printing Speed and Quality (인쇄 속도 향상과 화질 개선을 위한 잉크젯 프린터 헤드의 액적 분사 신호 타이밍 제어)

  • Cho, Young-Wan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.8
    • /
    • pp.1727-1734
    • /
    • 2011
  • In this paper, a position control scheme of the ink droplet is presented for the high image quality and print speed ink jet printer. The proposed scheme estimates the impact position and compensates it by control of the jet strobe time based on the dynamic equations describing the moving trajectory of the ejected ink droplet. Compared to the conventional jet strobe control which is based on the simple synchronization with the position signal of the ink jet nozzle, the proposed control scheme provides more accurate impact position control while the carrier is moving with accelerated or decelerated speed as well as steady state speed with fluctuations. The availability of printing during the acceleration and deceleration states of the carrier moving enables the print speed up and the frame size down which means the cost down.