• Title/Summary/Keyword: Equation of a first-order chemical reaction

Search Result 29, Processing Time 0.021 seconds

Effect of PEO viscoelasticity on carbon dioxide absorption in aqueous PEO solution of AMP

  • Park Sang-Wook;Choi Byoung-Sik;Lee Jae-Wook
    • Korea-Australia Rheology Journal
    • /
    • v.17 no.4
    • /
    • pp.199-205
    • /
    • 2005
  • Carbon dioxide was absorbed into aqueous polyethylene oxide (PEO) solution containing AMP in a flat-stirred vessel to investigate the effect of non-Newtonian rheological behavior of PEO on the rate of chemical absorption of $CO_2$, where the reaction between $CO_2$ and AMP was assumed to be a first-order reaction with respect to the molar concentration of $CO_2$ and AMP respectively. The liquid-side mass transfer coefficient, which was obtained from the dimensionless empirical equation containing the properties of viscoelasticity of the non-Newtonian liquid, was used to estimate the enhancement factor due to chemical reaction. PEO with elastic property of non-Newtonian liquid made the rate of chemical absorption of $CO_2$ accelerate compared with Newtonian liquid based on the same viscosity of the solution.

Studies on the Polarographic Kinetic Currents for the First Order Reactions at the Droping Mercury Electrode (水銀滴下電極에서 一次反應에 對한 포라로그라프電流에 關한 硏究)

  • Kim, Hwang-Am;Chin, Chang-Hee
    • Journal of the Korean Chemical Society
    • /
    • v.6 no.1
    • /
    • pp.14-18
    • /
    • 1962
  • Solution to the diffusion layer for the first order reaction at a droping mercury electrode (D.M.E.) is presented. Equations are derived for polarographic currents for the reactions at the D.M.E. A factor which is applicable to the D.M.E. is derived, when we use the equations of the polarographic currents for the reactions at a plane electrode(P.E.), and the rate constants of the backward reactions are negligibly small. Polarographic currents from a combination of diffusions and reactions are obtained at the D.M.E. with special approximation. Rate constant for the reaction of ferrous ion with hydrogen-peroxide is determined at the D.M.E.,using the data of Kolthoff and Perry. The agreement of the equation with the data of Kolthoff and Perry for the kinetic current of ferric ion in the presence of hydrogen-peroxide is good. Ratios of diffusion layer at the D.M.E. to the diffusion layer at the P.E. are discussed and show that, when the rate constants of the backward reactions for the first order reactions are larger than 1/0.05 sec-1. and drop-time about 3 sec., these ratioes are about one.

  • PDF

A Study of Transonic Combustion in a Diverging Channel Using Asymptotic Analysis (점근해석을 이용한 확대형 채널 내의 천음속 연소에 관한 연구)

  • Lee, Jang-Chang
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1604-1610
    • /
    • 2004
  • A steady dilute premixed combustion at transonic speeds in a diverging channel is investigated. The model explores the nonlinear interactions between the near-sonic speed of the flow, the small changes in geometry from a straight channel, and the small heat release due to the one-step first-order Arrhenius chemical reaction. The reactive flow can be described by a nonhomogeneous transonic small-disturbance (TSD) equation coupled with an ordinary differencial equation for the calculation of the reactant mass fraction in the combustible gas. The asymptotic analysis results in the similarity parameters that govern the reacting flow problem. The model is used to study transonic combustion at various amounts of incoming, reactant mass, reaction rates, and channel geometries.

  • PDF

Kinetics and Mechanism for Redox Reaction of cis-$[Co(en)_2(N_3)_2]^+$ with Fe(II) in Acidic Solution (산 촉매하에서 cis-$[Co(en)_2(N_3)_2]^+$ 와 Fe(II) 와의 산화-환원반응에 대한 반응속도와 메카니즘)

  • Byung-Kak Park;Kwang-Jin Kim;Joo-Sang Lim
    • Journal of the Korean Chemical Society
    • /
    • v.33 no.3
    • /
    • pp.309-314
    • /
    • 1989
  • A kinetic study was carried out for the redox reaction of cis-$[Co(en)_2(N_3)_2]^+$ with Fe(II) in acidic solution by spectrophotometric methods. This redox reaction system have been found to show a third order for overall reaction as the respective first order with respect to reactant cis-$[Co(en)_2(N_3)_2]^+$, Fe(II), and $H^+$ catalyst. The activation parameters, ${\Delta}H^{\neq}$ and ${\Delta}S^{\neq}$, were obtained as 14.2Kcal/mol and -16.7 e.u., respectively. On the basis of the kinetic data, we suggest that the redox reaction system proceeds via inner sphere mechanism. The rate equation derived from the proposed mechanism is in agreement with the observed rate equation.

  • PDF

The Phenol Wastewater Treatment by Candida tropicalis in Fluidized Bed Biofilm Reactor (유동층 반응기에서 Candida tropicalis 균에 의한 페놀함유 폐수처리에 관한 연구)

  • Kim, Woo Sik;Youm, Kyung Ho;Kim, Eung Sik
    • Microbiology and Biotechnology Letters
    • /
    • v.13 no.1
    • /
    • pp.33-39
    • /
    • 1985
  • The effects of initial concentration, flow rate, and recycle ratio on the removal efficiency of phenol were studied in a tapered fluidized bed reactor packed with activated carbon which was attached with Candida tropicalis. The optimum conditions of Candida tropicalis were showed that pH was 7.0 and temperature was $30^{\circ}C$, and the specific growth rate of Candida tropicalis was satisfied with the Monod equation up to 500 mg/L of phenol, and beyond it the inhibition of substrate was found. According to the increases of initial concentration and flow rate, the removal efficiency was decreased, as the recycle ratio was increased, the removal efficiency was increased. In the case of flow rate of 10mL/sec and the recycle ratio of 2, the removal efficiency was 90% above for the all of initial concentration. The removal rate of phenol was the first order reaction in this system, and the rate equation of reaction was as follows.

  • PDF

Kinetic Studies on the Oxidation Reaction of Malonic Acid by Ceric Ion (세륨(Ⅳ)에 의한 말론산의 산화반응에 관한 반응속도론적 연구)

  • Kim, Wang Gi
    • Journal of the Korean Chemical Society
    • /
    • v.38 no.10
    • /
    • pp.705-709
    • /
    • 1994
  • The kinetics of the oxidation reaction of malonic acid by ceric ion in 1 M sulfuric acid solution at $20^{\circ}C$ have been investigated by spectrophotometric method. The reaction rate at a large excess of malonic acid was found to be pseudo-first order. The observed pseudo-first order rate constants, $k_{obs}$, are dependent on the concentration of malonic acid, [MA], of which relationship has been found to be $k_{obs}$ = (0.592[MA])/(1+14.5[MA]$^2$). A mechanism for the reaction has been suggested on the basis of the above rate equation. The rate determining step may be the electron transfer reaction between enolate type malonate anion, which is formed by the acid dissociation reaction of malonic acid, and Ce(IV). The rate depression in the range of high concentration of MA has been explained by the formation of 1 : 2 chelate between Ce(IV) and malonate. According to the mechanism, the pH dependence of the rate, which was studied by Sengupta et al., has also been explained.

  • PDF

TREATMENT OF PHENOL CONTAINED IN WASTE WATER USING THE HETEROGENIZED FENTON SYSTEM

  • Kim, Seong-Bo
    • Environmental Engineering Research
    • /
    • v.12 no.1
    • /
    • pp.30-35
    • /
    • 2007
  • Fenton system using homogeneous iron catalyst is very powerful in the degradation of organic compounds, but has a disadvantage to remove Fe ions from water after wastewater treatment. Thus, iron catalyst was bounded to support such as inorganic and polymer materials. The PVP supporting iron catalyst showed a good catalytic performance in degradation of phenol contained in waste water and iron catalyst supported on ${SO_4}^{2-}$ type PVP (KEX 511) showed the best catalytic performance. Also, reaction kinetic study was carried out in this system. Reaction constants on various catalysts was obtained from the pseudo first order equation. Reaction rate constants with the heterogenized $FeCl_2/PVP$ catalyst is a three-fold smaller than that of $FeCl_2$ catalyst.

A Study on the Transesterification of Dimethylphthalate by 1,4-butanediol (Dimethylphthalates와 1,4-butanediol의 에스테르 교환반응에 관한 연구)

  • Jeong, Soon-Wook;Sohn, Byoung-Chung
    • Journal of the Korean Applied Science and Technology
    • /
    • v.9 no.1
    • /
    • pp.41-46
    • /
    • 1992
  • The transesterification of dimethylphthalate by 1,4-butanediol was kinetically investigated In the presence of various metal acetate catalysts at 180$^{\circ}C$. The quantity of dimethylphthalate reacted in the reaction flask was measured by gas chromatography. The transesterification was assumed to obey first-order kinetics with respect to dimethylphthalate and 1,4-butanediol, and a rate equation was derived. The linear relationship was shown between apparent rate constant and reciprocal absolute temperature, the activation energy has been calculated as 7.4kcal with lead acetate. The maximum reaction rate was appeared at the range of 1.5${\sim}$1.6 of electronegativity of metal ions.

Kinetics Studies on the Mechanism of Hydrolysis of S-Phenyl-S-vinyl-N-p-tosylsulfilimine Derivatives

  • Pyun, Sang-Yong;Kim, Tae-Rin;Lee, Chong-Ryoul;Kim, Whan-Gi
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.3
    • /
    • pp.306-310
    • /
    • 2003
  • Hydrolysis reactions of S-phenyl-S-vinyl-N-p-tosylsulfilimine (VSI) and its derivatives at various pH have been investigated kinetically. The hydrolysis reactions produced phenylvinylsulfoxide and p-toluene sulfonamide as the products. The reactions are first order and Hammett ρ values for pH 1.0, 6.0, and 11.0 are 0.82, 0.45, and 0.57, respectively. This reaction is not catalyzed by general base. The plot of k vs pH shows that there are three different regions of the rate constants $(k_t)$ in the profile.; At pH < 2 and pH > 10, the rate constants are directly proportional to the concentrations of hydronium and hydroxide ion catalyzed reactions, respectively. The rate constant remains nearly the same at 2 < pH < 10. On the bases of these results, the plausible hydrolysis mechanism and a rate equation have been proposed: At pH < 2.0, the reaction proceeds via the addition of water molecule to sulfur after protonation at the nitrogen atom of the sulfilimine, whereas at pH > 10.0, the reaction proceeds by the addition of hydroxide ion to sulfur directly. In the range of pH 2.0-10.0, the addition of water to sulfur of sulfilimine appears to be the rate controlling step.

Mechanism of the Hydrolysis of 2-Phenyl-4H,5H,6H-3-methyl-3-thiazinium Perchlorate Derivatives

  • 김태린;이소영;변상용;김주창;한만소
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.10
    • /
    • pp.1213-1217
    • /
    • 1999
  • Hydrolysis reactions of 2-phenyl-4H,5H,6H-3-methyl-3-thiazinium perchlorate (PTP) and its derivatives at various pH have been investigated kinetically. The hydrolysis is quantitative, producing N-3-mercaptopropyl-N-methylbenzamide as the only product in the all pH ranges. The observed rate of hydrolysis of PTP was always of the first-order. For hydrolysis from PTP, Hammett ρvalues were 0.53, 0.84 and 1.13 for pH 5.0, 8.0, and 10.0, respectively. Bronsted βvalue was 0.53 for general base catalysis. This reaction is catalyzed by general w acetate concentration. However, as the amount of base becomes larger, the rate of hydrolysis reaction approaches the limiting values. The plot of log k vs. pH shows that the rate constants (kt) are two different regions in the profile; one part is directly proportional to hydroxide ion concentration and the other is not. On the bases of these result, the plausible hydrolysis mechanism and a reaction equation were proposed: Below pH 4.5, the hydrolysis was initiated by the addition of water to α-carbon. Above pH 9.0, the hydrolysis was proceeded by the addition of hydroxide ion to α-carbon. However, in the range of pH 4.5-8.0, these two reactions occured competitively.