• 제목/요약/키워드: Equation of Motion Solution

검색결과 280건 처리시간 0.031초

Optimum time history analysis of SDOF structures using free scale of Haar wavelet

  • Mahdavi, S.H.;Shojaee, S.
    • Structural Engineering and Mechanics
    • /
    • 제45권1호
    • /
    • pp.95-110
    • /
    • 2013
  • In the recent decade, practical of wavelet technique is being utilized in various domain of science. Particularly, engineers are interested to the wavelet solution method in the time series analysis. Fundamentally, seismic responses of structures against time history loading such as an earthquake, illustrates optimum capability of systems. In this paper, a procedure using particularly discrete Haar wavelet basis functions is introduced, to solve dynamic equation of motion. In the proposed approach, a straightforward formulation in a fluent manner is derived from the approximation of the displacements. For this purpose, Haar operational matrix is derived and applied in the dynamic analysis. It's free-scaled matrix converts differential equation of motion to the algebraic equations. It is shown that accuracy of dynamic responses relies on, access of load in the first step, before piecewise analysis added to the technique of equation solver in the last step for large scale of wavelet. To demonstrate the effectiveness of this scheme, improved formulations are extended to the linear and nonlinear structural dynamic analysis. The validity and effectiveness of the developed method is verified with three examples. The results were compared with those from the numerical methods such as Duhamel integration, Runge-Kutta and Wilson-${\theta}$ method.

비선형 경계조건을 가진 봉의 공진응답을 위한 다중시간해의 타당성 (Validity of the Multiple Scale Solution for a Resonance Response of a Bar with a Nonlinear Boundary Condition)

  • 이원경;여명환;배상수
    • 소음진동
    • /
    • 제7권1호
    • /
    • pp.55-60
    • /
    • 1997
  • In order to examine the validity of an asymptotic solution obtained from the method of multiple scales, we investigate a third-order subharmonic resonance response of a bar constrained by a nonlinear spring to a harmonic excitation. The motion of the bar is governed by a linear partial differential equation with a nonlinear boundary condition. The nonlinear boundary value problem is solved by using the finite difference method. The numerical solution is compared with the asymptotic solution.

  • PDF

CH$_4$가스중에서의 전자군 파라미터의 해석 (Analysis of electron swarm parameter in CH$_4$ gas)

  • 문기석;서상현;송병두;하성철;유회영;김상남
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1997년도 추계학술대회 논문집
    • /
    • pp.167-172
    • /
    • 1997
  • The electron swarm parameters and Energy distribution function have been calculated for electrons motion through CH$_4$ pure gas under the action of uniform electric field for 0.1$\leq$E/N(Td)$\leq$300, at the 300( $^{\circ}$K), using MCS method and Boltzmann transport equation. And then the resulting values of electron drift velocity were compared to experimental data and adjustment made in assumed cross sections until good agreement was obtained. The electron drift velocity is very useful in the fields of study relating to the conductive and dielectric phenomena of gas medium. The electron energy distribution in gas discharge are generally nonmaxwellian , and must be calculated by a numerical solution of the Boltzmann equation which takes in the elastic and inelastic collisions. To analyze the physical phenomena and properties (or electron swarm motion in a gas under the influence of an electric field, the energy distribution function of electrons and the theoretical deriveration of the electron drift velocity are calculated by the Backward Prolongation with respect to the Boltzmann transport equation as a parameter of E/N(Td).

  • PDF

상하동요하는 2차원 원주의 고유진동수: 시간 영역 해석 (Natural Frequency of 2-Dimensional Heaving Circular Cylinder: Time-Domain Analysis)

  • 김기범;이승준
    • 대한조선학회논문집
    • /
    • 제50권4호
    • /
    • pp.224-231
    • /
    • 2013
  • The concept of the natural frequency is useful for understanding the characters of oscillating systems. However, when a circular cylinder floating horizontally on the water surface is heaving, due to the hydrodynamic forces, the system is not governed by the equation like that of the harmonic one. In this paper, in order to shed some lights on the more correct use of the concept of the natural frequency, a problem of the heaving circular cylinder is analyzed in the time domain. The equation of motion, an integro-differential equation, was derived following the fashion of Cummins (1962), and its coefficients including the retardation function were obtained using the numerical solution of Lee (2012). The equation was solved numerically, and the experiment was also carried out in the CNU flume. Using our numerical and experimental results, the natural frequency was defined as its average value given by the motion data excluding those of the initial stage. Our results were then compared with those of the existing investigations such as Maskell and Ursell (1970), Ito (1977) and Yeung (1982) as well as the newly obtained results of Lee (2012). Comparison showed that the natural frequency obtained here agrees well with that of Lee (2012), which was found through the frequency domain analysis. It was also shown that the approximation of heaving motion by a damped harmonic oscillation, which was regarded as suitable by most previous investigators, is not physically suitable for the reason that can be clearly shown through comparing the shape of MCFRs(Modulus of Complex Frequency Response). Furthermore, we found that although the previous approximations yield the damping ratio significantly different from our result the magnitude of natural frequency is not much different from our result.

회전원판과 스프링-댐퍼를 가진 질점계의 상호작용에 의한 불안정성 (Instability caused by interaction between a rotating disk and a mass-spring-damper system)

  • 김창부;한덕호
    • 대한기계학회논문집A
    • /
    • 제21권12호
    • /
    • pp.2038-2046
    • /
    • 1997
  • In this paper the instability of the system which has a disk and a mass-spring-damper system interacting through a medium having stiffness and damping is analyzed. To solve the equations of motion of this systme, it is assumed that the solution consists of the eigenfunctions which are the products of the Bessel functions and sine or cosine functions. The former represents the radial characteristics of the disk and the latter represents the circumferential characteristics. Using this assumed solution and the orthogonality of the eigenfunctions, the equations of motion can be transformed into a set of equations of motion with variables dependent only on the time. After this set is changed to the state equation, the eigenvalue problem can be made. Once the eigenvalues are calculated according to the angular velocity of the disk, the dynamic characteristics ofthis system is obtained. Because the thickness of the disk and the element characteristics of the mass-spring-damper system have important effects on the stability of the system, it will be understood how these factors affect the system and then a method to ameliorate the stability of the system with a disk will be presented.

독립관절제어 로봇의 관절외란해석과 최적경로위치 문제의 해법 (Joint disturbance torque analysis for independent joint controlled robots and its application in optimal path placement)

  • 최명환
    • 제어로봇시스템학회논문지
    • /
    • 제4권3호
    • /
    • pp.342-348
    • /
    • 1998
  • A majority of industrial robots are controlled by a simple joint servo control of joint actuators. In this type of control, the performance of control is greatly influenced by the joint interaction torques including Coriolis and centrifugal forces, which act as disturbance torques to the control system. As the speed of the robot increases, the effect of this disturbance torque increases, and hence makes the high speed - high precision control more difficult to achieve. In this paper, the joint disturbance torque of robots is analyzed. The joint disturbance torque is defined using the coefficients of dynamic equation of motion, and for the case of a 2 DOF planar robot, the conditions for the minimum and maximum joint disturbance torques are identified, and the effect of link parameters and joint variables on the joint disturbance torque are examined. Then, a solution to the optimal path placement problem is propose that minimizes the joint disturbance torque during a straight line motion. The proposed method is illustrated using computer simulation. The proposed solution method can be applied to a class of robots that are controlled by independent joint servo control, which includes the vast majority of industrial robots.

  • PDF

Motion Analysis of a Translating Flexible Beam Carrying a Moving Mass

  • Park, Sangdeok;Youngil Youm
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제2권4호
    • /
    • pp.30-39
    • /
    • 2001
  • This paper investigates vibrational motion of a flexible beam fixed on a moving cart and carrying a moving mass. The equations of motion of the beam-mass-cart system are analysed through the unconstrained modal analysis. The exact normal mode solution used in modal analysis correspond to the eigenfrequencies for each position of the moving mass and to the ratios of the weight of the beam-mass-car system. Time solutions of normal modes are also transformed properly according to the position of the moving mass. Numerical simulations are carried out to obtain open-loop responses of the system in tracking pre-designed paths of the moving mass. The simulation results show that the model predicts the dynamic behavior of the beam-mass-cart system well. Experiments are carried out to show the validity of the proposed analytical method.

  • PDF

Optimal motion control for robot manipulators

  • Shin, Jin-Ho;Lee, Ju-Jang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1993년도 한국자동제어학술회의논문집(국제학술편); Seoul National University, Seoul; 20-22 Oct. 1993
    • /
    • pp.179-184
    • /
    • 1993
  • In this paper, an optimal motion control scheme is proposed for robot manipulators. A simple explicit solution to the Hamilton-Jacobi equation is presented. The optimization of motion control is based on the mininization of the torque term affecting the kinetic energy and the augmented error which has the first-order stable dynamics for the position and velocity tracking error. In the presence of parametric uncertainty, an adaptive control scheme using the optimal principle is proposed. The global stability of the closed-loop system is guaranteed by the Lyapunov stability approach, The effectiveness and feasibility of the proposed control schemes are shown by simulation results.

  • PDF

유전 알고리즘을 이용한 IWR 이족 보행 로보트의 균형추 제어 (Control of balancing weight for IWR biped robot by genetic algorithm)

  • 심경흠;이보희;김진걸
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.1185-1188
    • /
    • 1996
  • In this paper we present a genetic approach for trajectory control algorithm of balancing weight for IWR biped walking robot. The biped walking robot, IWR that was made by Automatic Control Lab. of Inha University has a trunk which stabilizes its walking by generating compensation moment. Trunk is composed of a revolute and a prismatic joint which roles balancing weight. The motion of balancing weight is determined by the gait of legs and represented by two linear second order ordinary differential equations. The solution of this equation must satisfy some constraints simultaneously to have a physical meaning. Genetic algorithm search for this feasible motion of balancing weight under some constraints. Simulation results show that feasible motion of balancing weight can be obtained by genetic algorithm.

  • PDF

파중 진행하는 선박의 3차원 시간영역 운동해석 (3_D Time-Domain Analysis on the Motion of a Ship Advancing in Waves)

  • 홍도천;하태범;김대헌;송강현
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2001년도 추계학술대회 논문집
    • /
    • pp.164-168
    • /
    • 2001
  • The motion of a ship advancing in regular waves is analyzed in the time-domain using the convolution integral of the radiation forces. The memory effect functions and infinite frequency added masses are obtained from the solution of the three dimensional improved Green integral equation in the frequency domain by making use of the Fourier transformation. The ship motions in regular waves have been calculated by both the time and frequency domain methods. It has been shown that they agree very well with each other. The present time-domain method can be used to predict the time histories of unsteady motions in irregular waves. It can also be used to calculate the hydrostatic and Froude-Krylov forces over the instantaneous wetted surface of the ship hull to predict large ship motions, in a practical sense, advancing in large amplitude waves.

  • PDF