• Title/Summary/Keyword: Epoxy-Functionalized Silane

Search Result 4, Processing Time 0.025 seconds

Effect on the Physical Performance of Functionalized Silane Coupling Agent on Epoxy-Based Concrete Surface Finishing Material for Parking Floor (기능성 실란 커플링제가 에폭시계 콘크리트 주차장 바닥용 마감재의 물리적 성능에 미치는 영향)

  • Chae, Woo-Byung;Seong, Dong-Yun;Seo, Sang-Kyo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.05a
    • /
    • pp.279-282
    • /
    • 2012
  • This study attempted to the effect on the physical performance of silane coupling agent on solventless epoxy-based concrete surface finishing material for parking floor. Tests were carried out in accordance with KS F 4041 and KS F 4937. The results of compressive strength, flexural compressive are 95.6N/㎟, 25.4N/㎟ and after wheel moving load testing, average abrasive depth is 0.96mm, these results satisfied the quality standard of KS F 4041, KS F 4937. As conclusion, this study confirmed that the silane coupling agent greatly effected on the physical performance of solventless epoxy resin.

  • PDF

Synthesis and Photopolymerization of Vinyl Ether and Epoxy-Functionalized Silicones

  • Pyun, Sang-Yong;Kim, Whan-Gi
    • Macromolecular Research
    • /
    • v.11 no.3
    • /
    • pp.202-205
    • /
    • 2003
  • The reactive precursors, vinyl ethers, and epoxy-silicones, were synthesized. The vinyl ether monomers were prepared from primary alcohol and ethyl vinyl ether with mercury (II) acetate. The epoxy-functionalized silicones have been achieved by the controlled, rhodium-catalyzed, chemoselective hydrosilation of vinyl ether with siloxanes or silane. It was shown that the hydrosilation proceeds exclusively at the vinyl ether group of alkenyl vinyl ether without participation at the alkenyl group. The photoinduced cationic polymerization of these monomers was studied and found to be all highly reactive.

Interfacial Fracture Behavior of Epoxy Adhesives for Electronic Components (전자부품용 에폭시 접착제의 계면 파괴 거동 연구)

  • Kang, Byoung-Un
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.3
    • /
    • pp.1479-1487
    • /
    • 2011
  • In the field of the entire electronic component industry including mobile IT products, the importance of a versatile package with the multifunctional or high capacity memories is gradually increased. Multi Chip Package which has several chips in a single package is frequently used for that purpose. In MCP, epoxy adhesive films play a major role in adhesion between the chips or between chip and substrate. A series of silane coupling agents with a functional group such as epoxy, amine, mercaptan, and isocyanate were applied to the epoxy adhesives and material properties such as wettability and reliability of the adhesives were investigated. From the results, the silane coupling agent with an epoxy functional group showed highest wettability and peel strength in epoxy adhesive. For those reasons, it lead to a superior reliability in the epoxy adhesive against interfacial fracture behaviors through moisture resistance test.

Improved Thermal Conductivities of Epoxy Resins Containing Surface Functionalized BN Nanosheets

  • Weng, Ling;Wang, HeBing;Zhang, Xiaorui;Liu, Lizhu;Zhang, Hexin
    • Nano
    • /
    • v.13 no.11
    • /
    • pp.1850133.1-1850133.9
    • /
    • 2018
  • The hexagonal boron nitride nanosheets (BN) were firstly treated by silane coupling agents 3-aminopropyltriethoxysilane (KH550) and 3-glycidoxypropyl-trimethoxysilane (KH560) to introduce some amino and epoxy (EP) groups on the BN surface. These modified BN nanosheets were incorporated into an EP matrix to prepare BN@KH560/EP composites with excellent thermal conductivity and electrical insulation properties. Results showed that the thermal conductivity of BN@KH560/EP composite with 20 vol% BN dosage was found to be 0.442 W/($m{\cdot}K$), which was 81% higher than that of pure EP resin. Both BN/EP composites treated by KH550 and KH560 showed rather good electrical insulation properties, although the dielectric constant of BN@KH550/EP composites were slightly higher than BN@KH560/EP composites. Moreover, BN@KH560/EP composites also showed better thermal and mechanical properties than that of BN@KH550/EP composites.