• Title/Summary/Keyword: Epoxy Resin System

Search Result 224, Processing Time 0.038 seconds

Synthesis and Latent Characteristics of Thermal Cationic Latent Catalysts by Change of Substituent (치환기 변화에 따른 열잠재성 양이온 촉매의 합성과 잠재특성 연구)

  • Park, Soo-Jin;Heo, Gun-Young;Lee, Jae-Rock;Shim, Sang-Yeon;Suh, Dong-Hack
    • Polymer(Korea)
    • /
    • v.25 no.4
    • /
    • pp.558-567
    • /
    • 2001
  • The syntheses of thermal latent catalysts have been carried out by modifying the substituent of pyrazinium salts. The thermal latent properties and cure behaviors of difunctional epoxy resin (diglycidylether of bisphenol-A, DGEBA) with 1 wt% of catalyst as an initiator were investigated by dynamic DSC method. As a result, the synthesized catalysts showed the good latent thermal properties in epoxy system. With increasing the basicity of substituted catalyst, the cure temperature and activation energy of epoxy system were increased, whereas the activity was decreased. This was probably due to the fact that the activity and cure behavior were controlled by ring strain and basicity of substituent. Consequently, the catalyst activity modified by methyl group as an electron donor was decreased in increasing of basicity in an initiation step of epoxy cure system. This is due to a decreasing of stabilities of both leaving group of pyrazinium salts and benzyl cation. However, the catalyst activity modified by cyano group as an electron acceptor was increased in increasing the stability of benzyl cation resulting from organic effects and resonance.

  • PDF

Electrical Treeing Deterioration and Dielectric Breakdown Phenomena in Polymeric Insulator (고분자 절연재료에서 전기트리 열화 및 절연파괴 현상)

  • Cho, Yeong-Sin;Kim, Sang-Uk
    • Korean Journal of Materials Research
    • /
    • v.9 no.4
    • /
    • pp.398-403
    • /
    • 1999
  • Studies on the electrical treeing deterioration and dielectric breakdown phenomena in the polymeric insulator of polyethylene and epoxy resin were carried out. Block type samples with needle-plane electrode geometry were electrically stressed and the tree pattern from the needle tip was observed. In LDPE the density of electrical tree was very high and its pattern was bush type. For the case of XLPE, branched tree was observed. As temperature and SN content increased, the dielectric breakdown voltage decreased and the treeing phenomena became more complicated. Fan type cracks were observed around the conducting tree path in the brittle DGEBA/MDA system.

  • PDF

Study of Nanoparticle Effect on Durability of Carbon fiber/Epoxy Resin Composites in Moisture Environment (수분환경에서 탄소섬유강화 에폭시수지의 내구성에 대한 나노입자의 영향)

  • Ahn, Seok-Hwan;Choi, Young-Min;Moon, Chang-Kwon
    • Journal of Power System Engineering
    • /
    • v.18 no.2
    • /
    • pp.43-49
    • /
    • 2014
  • This study has been investigated on the durability of carbon fiber/epoxy composites (CFRP) in moisture environment. The carbon fiber/epoxy composites were modified to use the nanoparticles such as carbon nanotubes and titanium oxide. These hybrid composites were exposed to moisture environment for a certain period of time. Weight gain according to immersion time, quasi-static tensile test and micro-graphic characterization were investigated on the samples exposed to moisture environment. Consequently, the weight gains increased with increasing immersion time and weight gain of the hybrid composites was lower than the one of CFRP through the whole immersion time. The tensile strengths decreased with increasing immersion time and tensile strengths of the hybrid composites were higher than the one of CFRP through the whole immersion time. The CFRP were observed more degraded than hybrid compositess in moisture environment. Therefore, it was concluded that the addition of nanoparticles in CFRP could lead to improve the durability in moisture environment.

Optimal design of Natural Fiber Composite Structure for Automobile

  • Lee, Haseung;Kong, Changduk;Park, Hyunbum
    • International Journal of Aerospace System Engineering
    • /
    • v.3 no.1
    • /
    • pp.21-24
    • /
    • 2016
  • In this study, a optimal design on the hood automotive using eco-friendly natural fiber composites is performed. The hood of an automobile is determined by dividing the Inner panel shape through optimization phase to outer panel and inner panel. It was performed to optimize the size of the thickness of the inner panel and the outer panel by applying a flax/epoxy composite materials. The optimized shape was evaluated for weight-lightening, stability and the pedestrian collision safety. Through the resin flow analysis are confirmed to molding possibility judgment of product.

Effect of Surface Free Energies on Mechanical Properties of Epoxy/Polyurethane Blend System (에폭시/폴리우레탄 블렌드 시스템의 표면 자유에너지 변화가 기계적 특성에 미치는 영향)

  • 박수진;진중성;이재락;박병기
    • Polymer(Korea)
    • /
    • v.24 no.2
    • /
    • pp.245-251
    • /
    • 2000
  • A blend system prepared from epoxy(EP) and polyurethane (PU) was investigated in terms of the contact angle and mechanical properties. The contents of EP/PU were varied within 100/0~100/60 phr in the presence of 20 phr DDM (4,4'-diamino diphenyl methane) as a curing agent for epoxy resin. Contact angle measurements were performed employing a Rame-Hart contact angle goniometer. Deionized water and diiodomethane were chosen as the testing liquids. In this work, Owens-Wendt and Wu's models using a geometric mean were studied to analyze the surface free energy of blend system. For the mechanical and toughening properties of the casting specimens, the critical stress Intensity factor ($K_{IC}$) and impact test were performed. Especially, the impact test was carried out at room and cryogenic temperatures. As a result, specific or polar component of the surface free energy of the blend system was largely influenced on the addition of the PU resulting in increasing the impact strength for the excellent low- temperature performance.

  • PDF

Marginal fit of anterior 3-unit fixed partial zirconia restorations using different CAD/CAM systems

  • Song, Tae-Jin;Kwon, Taek-Ka;Yang, Jae-Ho;Han, Jung-Suk;Lee, Jai-Bong;Kim, Sung-Hun;Yeo, In-Sung
    • The Journal of Advanced Prosthodontics
    • /
    • v.5 no.3
    • /
    • pp.219-225
    • /
    • 2013
  • PURPOSE. Few studies have investigated the marginal accuracy of 3-unit zirconia fixed partial dentures (FPDs) fabricated by computer-aided design/computer-aided manufacturing (CAD/CAM) system. The purpose of this study was to compare the marginal fit of zirconia FPDs made using two CAD/CAM systems with that of metal-ceramic FPDs. MATERIALS AND METHODS. Artificial resin maxillary central and lateral incisors were prepared for 3-unit FPDs and fixed in yellow stone. This model was duplicated to epoxy resin die. On the resin die, 15 three-unit FPDs were fabricated per group (45 in total): Group A, zirconia 3-unit FPDs made with the Everest system; Group B, zirconia 3-unit FPDs made with the Lava system; and Group C, metal-ceramic 3-unit FPDs. They were cemented to resin dies with resin cement. After removal of pontic, each retainer was separated and observed under a microscope (Presize 440C). Marginal gaps of experimental groups were analyzed using one-way ANOVA and Duncan test. RESULTS. Mean marginal gaps of 3-unit FPDs were $60.46{\mu}m$ for the Everest group, $78.71{\mu}m$ for the Lava group, and $81.32{\mu}m$ for the metal-ceramic group. The Everest group demonstrated significantly smaller marginal gap than the Lava and the metal-ceramic groups (P<.05). The marginal gap did not significantly differ between the Lava and the metal-ceramic groups (P>.05). CONCLUSION. The marginal gaps of anterior 3-unit zirconia FPD differed according to CAD/CAM systems, but still fell within clinically acceptable ranges compared with conventional metal-ceramic restoration.

Studies on Cure Kinetics and Rheological Properties of Difunctional Epoxy/Polysulfone Blend System (이관능성 에폭시/폴리썰폰 블렌드의 경화 동력학 및 유변학적 특성에 관한 연구)

  • 박수진;김현철;이재락
    • Polymer(Korea)
    • /
    • v.25 no.2
    • /
    • pp.177-185
    • /
    • 2001
  • In this work, the cure kinetics and rheological properties of difunctional epoxy(diglycidylether of bisphenol A, DGEBA)/polysulfone (PSF) blends were investigated using differential scanning calorimeter and rheometer. From the DSC results of the blends, the temperature of the exothermic peak and cure activation energy (E) using a half-width method were increased with increasing the PSF content to neat epoxy resin up to 30 wt%. However, a marginal decrease in the blend system was shown in E. The conversion ($\alpha$) and conversion rate (d$\alpha$/dt) were decreased as the content of PSF increases. Rheological properties of the blend system were investigated under isothermal condition using a rheometer. Cross-linking activation energy (E$_{c}$) was determined from the Arrhenius equation based on gel time and curing temperature. As a result, the E$_{c}$ showed a similar behavior with E which could be resulted from high viscosity of PSF and the phase separation between DGEBA and PSF.PSF.f PSF and the phase separation between DGEBA and PSF.PSF.

  • PDF

Electrically conductive nano adhesive bonding: Futuristic approach for satellites and electromagnetic interference shielding

  • Ganesh, M. Gokul;Lavenya, K.;Kirubashini, K.A.;Ajeesh, G.;Bhowmik, Shantanu;Epaarachchi, Jayantha Ananda;Yuan, Xiaowen
    • Advances in aircraft and spacecraft science
    • /
    • v.4 no.6
    • /
    • pp.729-744
    • /
    • 2017
  • This investigation highlights rationale of electrically conductive nano adhesives for its essential application for Electromagnetic Interference (EMI) Shielding in satellites and Lightning Strike Protection in aircrafts. Carbon Nano Fibres (CNF) were functionalized by electroless process using Tollen's reagent and by Plasma Enhanced Chemical Vapour Deposition (PECVD) process by depositing silver on CNF. Different weight percentage of CNF and silver coated CNF were reinforced into the epoxy resin hardener system. Scanning Electron Microscopy (SEM) micrographs clearly show the presence of CNF in the epoxy matrix, thus giving enough evidence to show that dispersion is uniform. Transmission Electron Microscopy (TEM) studies reveal that there is uniform deposition of silver on CNF resulting in significant improvement in interfacial adhesion with epoxy matrix. There is a considerable increase in thermal stability of the conductive nano adhesive demonstrated by Differential Scanning Calorimetry (DSC) and Thermogravimetric Analysis (TGA). Four probe conductivity meters clearly shows a substantial increase in the electrical conductivity of silver coated CNF-epoxy composite compared to non-coated CNF-epoxy composite. Tensile test results clearly show that there is a significant increase in the tensile strength of silver coated CNF-composites compared to non-coated CNF-epoxy composites. Consequently, this technology is highly desirable for satellites and EMI Shielding and will open a new dimension in space research.

Effect of Gamma Ray Irradiation on the Mechanical and Thermal Properties of MWNTs Reinforced Epoxy Resins

  • Shin, Bum Sik;Shin, Jin Wook;Jeun, Joon Pyo;Kim, Hyun Bin;Oh, Seung Hwan;Kang, Phil Hyun
    • Journal of Radiation Industry
    • /
    • v.5 no.2
    • /
    • pp.137-143
    • /
    • 2011
  • Epoxy resins are widely used as high performance thermosets in many industrial applications, such as coatings, adhesives and composites. Recently, a lot of research has been carried out in order to improve their mechanical properties and thermal stability in various fields. Carbon nanotubes possess high physical and mechanical properties that are considered to be ideal reinforcing materials in composites. CNT-reinforced epoxy system hold the promise of delivering superior composite materials with their high strength, light weight and multi functional features. Therefore, this study used multi-walled carbon nanotubes (MWNT) and gamma rays to improve the mechanical and thermal properties of epoxy. The diglycidyl ether of bisphenol A (DGEBA) as epoxy resins were cured by gamma ray irradiation with well-dispersed MWNTs as a reinforcing agent and triarylsulfonium hexafluoroantimonate (TASHFA) as an initiator. The flexural modulus was measured by UTM (universal testing machine). At this point, the flexural modulus factor exhibits an upper limit at 0.1 wt% MWNT. The thermal properties had improved by increasing the content of MWNT in the result of TGA (thermogravimetric analysis). However, they were decreased with increasing the radiation dose. The change of glass transition temperature by the radiation dose was characterized by DMA (dynamic mechanical analysis).

Assessment of inlay ceramic restorations manufactured using the hot-pressing method (열 가압 방식을 사용하여 제작된 인레이 세라믹 수복물의 적합도 평가)

  • Lee, Beom-Il;You, Seung-Gyu;You, Seung-Min;Park, Dong-In;Kim, Ji-Hwan
    • Journal of Technologic Dentistry
    • /
    • v.42 no.1
    • /
    • pp.9-16
    • /
    • 2020
  • Purpose: The purpose of this study was to compare the marginal and internal fit of lithium disilicate ceramic inlay produced by heat pressing that inlay pattern made by subtractive manufacturing and additive manufacturing method. Methods: A mandibular lower first molar that mesial occlusal cavity (MO cavity) die was prepared. After fabricating an epoxy resin model using a silicone impression material, epoxy resin die was scanned with a dental model scanner to design an MO cavity inlay. The designed STL pile was used to fabricate wax patterns and resin patterns, and then lithium disilicate ceramic inlays were fabricated using hot-press method. For the measurement of the marginal and internal gap of the lithium disilicate, silicone replica method was applied, and gap was measured through an optical microscope (x 80). Data were tested for significant differences using the Mann-Whitney Utest. Results: The marginal fit was 103.56±9.92㎛ in the MIL-IN group and 81.57±9.33㎛ in the SLA-IN group, with a significant difference found between the two groups (p<0.05). The internal fit was 120.99±17.52㎛ in the MIL-IN group and 99.18±6.65㎛ in the SLA-IN group, with a significant difference found between the two groups (p<0.05). Conclusion: It is clinically more appropriate to apply the additive manufacturing than subtractive manufacturing method in producing lithium disilicate inlay using CAD/CAM system.