• 제목/요약/키워드: Epoxy/heterogeneous micro composites

검색결과 5건 처리시간 0.017초

친환경 GIS용 전력기기의 적용을 위한 에폭시 이종무기물 복합재료의 전기적, 기계적 특성 (Electrical and Mechanical Properties of Epoxy/Heterogeneous Inorganic Composites Materials for the Application of Electric Power GIS Appliances)

  • 박재준
    • 전기학회논문지
    • /
    • 제67권12호
    • /
    • pp.1633-1640
    • /
    • 2018
  • Epoxy resin is a polar thermosetting polymer that is widely employed in different branches of industry and everyday life, due to their stable physical and chemical properties. Of all the polymer materials currently being used in the electrical insulation industry, epoxy resin is the most widely used kind, chosen as the base polymer material in the present study. Composites were prepared according to the mixing ratio (MS: MA, 1: 9, 3: 7, 5: 5, 7: 3, 9: 1)of mixture for Heterogeneous Minerals(Micro Silica:MS, Micro Alumina:MA) (MS+MA). We have investigated for AC electrical insulation breakdown characteristics and the dielectric properties (permittivity, dielectric loss, and conductivity) with frequency changes. The electrical AC insulation breakdown performance was improved with the increase of the mixing ratio of MS according to heterogeneous mineral material mixture(MS+MA). As Dielectric properties, the dielectric constant and dielectric loss increased with decreasing frequency and decreased with increasing MS content ratio of heterogeneous mineral mixture. Tensile strength and flexural strength according to the mixing ratio (MS + MA) of epoxy / heterogeneous mineral mixture were studied by mechanical properties. The performance of mechanical tensile and flexural strength was significantly improved as the fill contents ratio of MS increased.

표면처리된 나노알루미나가 첨가된 에폭시/멀티-알루미나 콤포지트의 교류절연파괴 특성 (The AC Insulation Breakdown Properties of Epoxy/Multi-Alumina Composites for Adding Surface Modified Nano Alumina)

  • 박재준
    • 전기학회논문지
    • /
    • 제65권9호
    • /
    • pp.1511-1517
    • /
    • 2016
  • The aim of this study is to improve of properties for electrical AC insulation breakdown strength using epoxy/micro-nano alumina composites with adding glycerol diglycidyl ether (GDE:1,3,5g). This paper deals with the effects of GDE addition for epoxy/micro alumina contents (40,50,60wt%)+surface modified nano alumina(1_phr) composites. 14 kinds specimen were prepared with containing epoxy resins, epoxy micro composites and epoxy nano-micro alumina mixture composites. Average particle size of nano and micro alumina used were 30nm and $1{\sim}2{\mu}m$, respectively. The micro alumina used were alpha phase with Heterogeneous and nano alumina were gamma phase particles of spherical shape. The electrical AC insulation breakdown strength was evaluated by sphere to sphere electrode system and raising velocity 1kV/s. The AC breakdown strength decreased insulation properties of multi-composites according to increasing micro alumina and GDE addition contents.

표면개질된 나노알루미나를 혼합한, 에폭시/마이크로-나노알루미나 콤포지트의 열적특성 (A Study on the Thermal Properties of Epoxy/Micro-Nano Alumina Composites, as Mixture of Surface Modified Nano Alumina)

  • 박재준
    • 전기학회논문지
    • /
    • 제65권9호
    • /
    • pp.1504-1510
    • /
    • 2016
  • The aim of this study is to improve properties both glass transition temperature($T_g$) and coefficient of thermal expansion(CTE) using epoxy/micro-nano alumina composites with adding glycerol diglycidyl ether (GDE:1,2,3,5g). This paper deals with the effects of GDE addition for epoxy/micro alumina contents (40, 50, 60wt%)+surface modified nano alumina(1_phr) composites. 20 kinds specimen were prepared with containing micro, nano alumina and GDE as a micro composites(10, 20, 30, 40, 50, 60, 70wt%) or a nano/micro alumina composites(1phr/40, 50, 60wt%). Average particle size of nano and micro alumina used were 30nm and $1{\sim}2{\mu}m$, respectively. The micro alumina used were alpha phase with Heterogeneous and nano alumina were gamma phase particles of spherical shape. The glass transition temperature and coefficients of thermal expansion was evaluated by DSC and TMA. The glass transition temperature decreased and coefficients of thermal expansion become smaller with filled contents of epoxy/micro alumina composites. On the other hand, $T_g$ and CTE as GDE addition variation(1,2,3,5g) of epoxy/micro-nano alumina composites decreased and increased respectively.

친환경 GIS Spacer용, 이종 무기물 절연소재의 혼합비 최적화를 위한 부분방전 저항성 특성 연구 (A Study on the Partial Discharge Resistance Characteristic for Optimizing the Mixing Ratio of Heterogeneous Inorganic Insulated Materials for Environmentally Friendly GIS Spacer)

  • 박재준
    • 전기학회논문지
    • /
    • 제67권9호
    • /
    • pp.1189-1196
    • /
    • 2018
  • 7 type composites (40, 45, 50, 55, 60, 65, and 70 wt.%)were prepared for the environmentally friendly GIS Spacer. Five kinds of samples were prepared for optimization of the filler content ratio (MS: MA = 1: 9, 3: 7, 5: 5, 7: 3, 9: 1) of epoxy / microsilica and microalumina. As a result of evaluation of the partial discharge resistance characteristic, surface erosion is generally slowed down as the fill amount of micro silica is increased. Also, partial discharge resistance characteristics for the development of insulating materials with optimal mixing ratios of heterologous showed a higher partial resistance of discharge and a decrease in erosion, as the filler content ratio of micro silica was larger. In the future, various researches such as electrical, mechanical, and thermal studies will be needed to develop insulating materials that can commercialize power devices in environmentally friendly insulating gas.

자체 감지능 및 작동기용 다기능 하이브리드 나노복합재료의 계면 특성 및 소수성 표면 연구 (Interfacial Evaluation and Hydrophobicity of Multifunctional Hybrid Nanocomposites for Self-sensing and Actuation)

  • 왕작가;공조엘;장정훈;김명수;박종만
    • Composites Research
    • /
    • 제23권2호
    • /
    • pp.24-30
    • /
    • 2010
  • 니켈-나노분말/에폭시 복합재료의 계면 특성과 소수성을 자체-감지능과 작동기 측정을 위해 평가하였다. 경사형 시편을 사용하여 접촉 저항 및 저항도를 측정하였다. 자기장에서 복합재료의 작동성을 세가지 파형들, 즉, 싸인, 삼각, 그리고 사각파를 사용하여 평가하였다. 균일하지 않은 표면에 존재하는 소수성 영역 때문에 Ni-에폭시 나노복합재료의 어떤 부분은 초소수성보다는 다소 낮은 접촉각인 110도를 가졌다. 동적 접촉각은 정적 접촉각과 경향이 상호 일치함을 보였다. 니켈-나노분말의 고유의 금속성질 때문에 자체 감지를 확인하였으며, 또한 전자기장에 작동 반응을 잘 하였다. 니켈-나노분말/에폭시 복합재료의 최대 및 최적의 성능을 얻기 위해서, 레이져 변위 센서를 사용하여, 파형, 주파수, 그리고 전압의 함수로 작동기의 변위를 평가하였다. 니켈-나노분말/에폭시 복합재료의 작동은 적용된 주파수와 전압의 함수로써 증가하였다. 작동된 복합재료들의 연신율은 전압의 증가에 따라 삼각 혹은 사각파보다 싸인파에서 더욱 빨리 증가하였다.