• Title/Summary/Keyword: Epithelial to mesenchymal transition

Search Result 177, Processing Time 0.024 seconds

T-plastin contributes to epithelial-mesenchymal transition in human lung cancer cells through FAK/AKT/Slug axis signaling pathway

  • Soon Yong Park;Hyeongrok Choi;Soo Min Choi;Seungwon Wang;Sangin Shim;Woojin Jun;Jungkwan Lee;Jin Woong Chung
    • BMB Reports
    • /
    • v.57 no.6
    • /
    • pp.305-310
    • /
    • 2024
  • T-plastin (PLST), a member of the actin-bundling protein family, plays crucial roles in cytoskeletal structure, regulation, and motility. Studies have shown that the plastin family is associated with the malignant characteristics of cancer, such as circulating tumor cells and metastasis, by inducing epithelial-mesenchymal transition (EMT) in various cancer cells. However, the role of PLST in the EMT of human lung cancer cells remains unclear. In this study, we observed that PLST overexpression enhanced cell migratory and invasive abilities, whereas its downregulation resulted in their suppression. Moreover, PLST expression levels were associated with the expression patterns of EMT markers, including E-cadherin, vimentin, and Slug. Furthermore, the phosphorylation levels of focal adhesion kinase (FAK) and AKT serine/threonine kinase (AKT) were dependent on PLST expression levels. These findings indicate that PLST induces the migration and invasion of human lung cancer cells by promoting Slug-mediated EMT via the FAK/AKT signaling pathway.

Benzidine Induces Epithelial-Mesenchymal Transition of Human Bladder Cancer Cells through Activation of ERK5 Pathway

  • Sun, Xin;Zhang, Tao;Deng, Qifei;Zhou, Qirui;Sun, Xianchao;Li, Enlai;Yu, Dexin;Zhong, Caiyun
    • Molecules and Cells
    • /
    • v.41 no.3
    • /
    • pp.188-197
    • /
    • 2018
  • Benzidine, a known carcinogen, is closely associated with the development of bladder cancer (BC). Epithelial-mesenchymal transition (EMT) is a critical pathophysiological process in BC progression. The underlying molecular mechanisms of mitogen-activated protein kinase (MAPK) pathway, especially extracellular regulated protein kinases 5 (ERK5), in regulating benzidine-induced EMT remains unclarified. Hence, two human bladder cell lines, T24 and EJ, were utilized in our study. Briefly, cell migration was assessed by wound healing assay, and cell invasion was determined by Transwell assay. Quantitative PCR and western blot were utilized to determine both gene expressions as well as protein levels of EMT and MAPK, respectively. Small interfering RNA (siRNA) was transfected to further determine ERK5 function. As a result, the migration and invasion abilities were enhanced, epithelial marker expression was decreased while mesenchymal marker expression was increased in human BC cell lines. Meanwhile, benzidine administration led to activation of ERK5 and activator protein 1 (AP-1) proteins, without effective stimulation of the Jun N-terminal kinase (JNK) or p38 pathways. Moreover, Benzidine-induced EMT and ERK5 activation were completely suppressed by XMD8-92 and siRNAs specific to ERK5. Of note, ERK1/2 was activated in benzidine-treated T24 cells, while benzidine-induced EMT could not be reversed by U0126, an ERK1/2 inhibitor, as indicated by further study. Collectively, our findings revealed that ERK5-mediated EMT was critically involved in benzidine-correlated BC progression, indicating the therapeutic significance of ERK5 in benzidine-related BC.

Emerging paradigms in cancer cell plasticity

  • Hyunbin D. Huh;Hyun Woo Park
    • BMB Reports
    • /
    • v.57 no.6
    • /
    • pp.273-280
    • /
    • 2024
  • Cancer cells metastasize to distant organs by altering their characteristics within the tumor microenvironment (TME) to effectively overcome challenges during the multistep tumorigenesis. Plasticity endows cancer cell with the capacity to shift between different morphological states to invade, disseminate, and seed metastasis. The epithelial-to-mesenchymal transition (EMT) is a theory derived from tissue biopsy, which explains the acquisition of EMT transcription factors (TFs) that convey mesenchymal features during cancer migration and invasion. On the other hand, adherent-to-suspension transition (AST) is an emerging theory derived from liquid biopsy, which describes the acquisition of hematopoietic features by AST-TFs that reprograms anchorage dependency during the dissemination of circulating tumor cells (CTCs). The induction and plasticity of EMT and AST dynamically reprogram cell-cell interaction and cell-matrix interaction during cancer dissemination and colonization. Here, we review the mechanisms governing cellular plasticity of AST and EMT during the metastatic cascade and discuss therapeutic challenges posed by these two morphological adaptations to provide insights for establishing new therapeutic interventions.

Silencing of Twist Expression by RNA Interference Suppresses Epithelial-mesenchymal Transition, Invasion, and Metastasis of Ovarian Cancer

  • Wang, Wen-Shuang;Yang, Xing-Sheng;Xia, Min;Jiang, Hai-Yang;Hou, Jian-Qing
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.9
    • /
    • pp.4435-4439
    • /
    • 2012
  • Purpose: This study aimed to explore the role of the Twist gene in the epithelial-mesenchymal transition of ovarian cancer. Methods: An RNA interference plasmid expressing a small interfering RNA (siRNA)-targeting Twist (Twist siRNA vector) was designed, constructed, and transfected into the human ovarian cancer cell line A2780. Transfection efficiency was assessed under a fluorescence microscope. Changes in the expression of Twist mRNA in A2780 after transfection with the pGenesil Twist shRNA plasmid were analyzed through RT-PCR. MTT assays and adhesion experiments were applied to determine changes in proliferation and adhesion ability of A2870 after transfection with the Twist shRNA plasmid. Changes in the expression of the E-cadherin and N-cadherin proteins in A2780 after transfection with the Twist shRNA plasmid were analyzed using Western blotting. Result: The restructuring plasmid pGenesil-Twist shRNA was constructed successfully. After 48 h of culture, 80% of the cells expressed high-intensity GFP fluorescence and stability. The expression of Twist decreased significantly after the transfection of the Twist shRNA plasmid (P<0.05). Proliferation of the transfected Twist shRNA cells showed no difference with that of the A2780-nontransfection or A2780-si-control groups (P>0.05) but the adhesion ability of A2780 decreased dramatically (P<0.05). Expression of the E-cadherin protein increased, whereas that of the N-cadherin protein decreased compared with that in the A2780-nontransfection or A2780-si-control groups (P<0.05). Conclusion: Twist is essential for epithelial-mesenchymal transition, invasion, and metastasis of ovarian cancer.

Anti-metastatic Effect of Natural Product-motivated Synthetic PPAR-γ Ligands

  • Li, Dan-dan;Wang, Ying;Ju, Zhiran;Kim, Eun La;Hong, Jongki;Jung, Jee H.
    • Natural Product Sciences
    • /
    • v.28 no.2
    • /
    • pp.80-88
    • /
    • 2022
  • Colorectal cancer is one of the most common cancers globally, ranking second for the number of cancer-related deaths. Metastasis has been reported as the main cause of death in patients with colorectal cancer. Peroxisome proliferator-activated receptor gamma (PPAR-γ) is a transcription factor that functions as a tumor suppressor by inhibiting cellular proliferation, migration, and invasion. In our previous efforts to generate natural product-motivated PPAR-γ ligands, the compounds 1 and 2 were obtained. These compounds activated PPAR-γ and inhibited the migration and invasion of HCT116 colorectal cancer cells, and they were also found to inhibit the epithelial-to-mesenchymal transition, which is a key process in cancer metastasis. Compounds 1 and 2 upregulated expression of the epithelial marker (E-cadherin), and downregulated expression of the mesenchymal marker (N-cadherin) and transcriptional factor (Snail). Therefore, the PPAR-γ agonists 1 and 2 could serve as a valuable model for the study on anti-metastatic leads for the treatment of colorectal cancer.

A spindle cell squamous cell carcinoma on the cheek presenting with in-transit metastases and a satellite lesion

  • Lee, Eui-Tae
    • Archives of Craniofacial Surgery
    • /
    • v.21 no.1
    • /
    • pp.58-63
    • /
    • 2020
  • Spindle cell squamous cell carcinoma (SpSCC) is a biphasic tumor composed of squamous cell epithelial and spindle cell mesenchymal components, both of which are malignant. Cutaneous SpSCC can cause diagnostic and therapeutic difficulties because of its rarity, heterogeneity, morphological similarity to other cutaneous spindle cell neoplasms, and uncertain pathogenesis and prognosis, particularly when the squamous cell carcinoma component is minimal or missing. Intransit metastasis and satellite lesion (satellitosis) constitute a spectrum of non-nodal regional metastases. Here the author reports the first known case of cutaneous SpSCC presenting with intransit metastases and a satellite lesion, which were exceptionally aggressive. A 77-year-old female patient presented with a 3×3×0.5 cm mass on her right cheek. Despite wide excision and postoperative radiation, the patient resulted in local recurrence and multiple distant metastases within 3 months. If many high-risk factors-particularly satellitosis and in-transit metastases are observed in a tumor with epithelial to mesenchymal transition, then further wide excision and adjuvant chemoradiation should be considered early in the treatment process. A multidisciplinary approach could be the key to cure the most aggressive malignancies of the skin, as in other organs.

Early Growth Response Protein-1 Involves in Transforming Growth factor-β1 Induced Epithelial-Mesenchymal Transition and Inhibits Migration of Non-Small-Cell Lung Cancer Cells

  • Shan, Li-Na;Song, Yong-Gui;Su, Dan;Liu, Ya-Li;Shi, Xian-Bao;Lu, Si-Jing
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.9
    • /
    • pp.4137-4142
    • /
    • 2015
  • The zinc finger transcription factor EGR 1 has a role in controlling synaptic plasticity, wound repair, female reproductive capacity, inflammation, growth control, apoptosis and tumor progression. Recent studies mainly focused on its role in growth control and apoptosis, however, little is known about its role in epithelial-mesenchymal transition (EMT). Here, we aim to explore whether EGR 1 is involved in TGF-${\beta}1$-induced EMT in non-smallcell lung cancer cells. Transforming growth factor (TGF)-${\beta}1$ was utilized to induce EMT in this study. Western blotting, RT-PCR, and transwell chambers were used to identify phenotype changes. Western blotting was also used to observe changes of the expression of EGR 1. The lentivirus-mediated EGR 1 vector was used to increase EGR 1 expression. We investigated the change of migration to evaluate the effect of EGR 1 on non-small-cell lung cancer cells migration by transwell chambers. After stimulating with TGF-${\beta}1$, almost all A549 cells and Luca 1 cells (Non-small-cell lung cancer primary cells) changed to mesenchymal phenotype and acquired more migration capabilities. These cells also had lower EGR 1 protein expression. Overexpression of EGR 1 gene with EGR 1 vector could decrease tumor cell migration capabilities significantly after adding TGF-${\beta}1$. These data s howed an important role of EGR 1 in the EMT of non-small-cell lung cancer cells, as well as migration.

Roles of Signaling Pathways in the Epithelial-Mesenchymal Transition in Cancer

  • Liu, Xia;Yun, Fen;Shi, Lin;Li, Zhe-Hai;Luo, Nian-Rong;Jia, Yong-Feng
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.15
    • /
    • pp.6201-6206
    • /
    • 2015
  • The epithelial-mesenchymal transition (EMT) is a cellular process though which an epithelial phenotype can be converted into a phenotype of mesenchymal cells. Under physiological conditions EMT is important for embryogenesis, organ development, wound repair and tissue remodeling. However, EMT may also be activated under pathologic conditions, especially in carcinogenesis and metastatic progression. Major signaling pathways involved in EMT include transforming growth factor ${\beta}(TGF-{\beta})$, Wnt, Notch, Hedgehog and other signaling pathways. These pathways are related to several transcription factors, including Twist, Smads and zinc finger proteins snail and slug. These interact with each other to provide crosstalk between the relevant signaling pathways. This review lays emphasis on studying the relationship between EMT and signaling pathways in carcinogenesis and metastatic progression.

MiR-363 inhibits cisplatin chemoresistance of epithelial ovarian cancer by regulating snail-induced epithelial-mesenchymal transition

  • Cao, Lanqin;Wan, Qian;Li, Fengjie;Tang, Can-e
    • BMB Reports
    • /
    • v.51 no.9
    • /
    • pp.456-461
    • /
    • 2018
  • Chemoresistance is a major barrier to successful cisplatin-based chemotherapy for epithelial ovarian cancer (EOC), and emerging evidences suggest that microRNAs (miRNAs) are involved in the resistance. In this study, it was indicated that miR-363 downregulation was significantly correlated with EOC carcinogenesis and cisplatin resistance. Moreover, miR-363 overexpression could resensitise cisplatin-resistant EOC cells to cisplatin treatment both in vitro and in vivo. In addition, data revealed that EMT inducer Snail was significantly upregulated in cisplatin-resistant EOC cell lines and EOC patients and was a functional target of miR-363 in EOC cells. Furthermore, snail overexpression could significantly attenuate miR-363-suppressed cisplatin resistance of EOC cells, suggesting that miR-363-regulated cisplatin resistance is mediated by snail-induced EMT in EOC cells. Taken together, findings suggest that miR-363 may be a biomarker for predicting responsiveness to cisplatin-based chemotherapy and a potential therapeutic target in EOC.

Anti-metastatic Effect of Taraxacum Officinale Water and Ethanol Extracts Through the Regulation of Epithelial-Mesenchymal Transition in Huh7 Cells (Huh7 간암세포에서 민들레 추출물의 상피간엽전환 억제를 통한 항전이 효과)

  • Hyun-Seo Yoon;Hyun An;Chung-Mu Park
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.11 no.3
    • /
    • pp.59-67
    • /
    • 2023
  • Purpose : Epithelial-to-mesenchymal transition (EMT) is recognized as an important cellular response in metastatic proceduresand characterized by loss of cellular polarity as well as gain of mesenchymal features, which enables migration and invasion. Hepatocellular carcinoma (HCC) is one of the most common primary carcinomas in the liver and exhibits a poor prognosis due to frequent extrahepatic metastasis. Taraxacum officinale has been used for a long time in oriental medicine because of its various pharmacological activitiessuch as anti-rheumatic, anti-inflammatory, antioxidative, and anticarcinogenic activities. In this study, the anti-metastatic activity of T. officinale water extract (TOWE) and ethanol extract (TOEE) was investigated through the regulation of EMT in the Huh7 cells. Methods : The effects of TOWE and TOEE on migratory and invasive activities were investigated by wound healing and in vitro invasion assays. Western blot analysis was also applied to analyze protein expression levels associated with EMT and their upstream transcription factors in Huh7 cells. Results : TOWE and TOEE treatment potently inhibited migration and invasion of Huh7 cells compared to the untreated group. Both extracts treatment inhibited protein expression levels of N-cadherin, matrix metalloproteinase (MMP)-9, and vimentin while E-cadherin was significantly accelerated. In addition, the activated status of transcription factors, Snail, nuclear factor (NF)-κ B, and zinc finger E-box binding homeobox (ZEB)1 was also inhibited with statistical significance. In comparison to both extracts, TOEE more potently attenuated migration, invasion, and EMT markers as well as their transcription factors in Huh7 cells than TOWE, which means that TOEE might possess more functional phytochemicals than TOWE. Conclusion : Consequently, TOWE and TOEEattenuated metastatic activity of hepatocellular carcinoma through the regulation of EMT markers and their transcription factors in Huh7 cells, which means that T. officinale might be a promising strategy for a chemopreventive agent against HCC metastasis.