• Title/Summary/Keyword: Epithelial to mesenchymal transition

Search Result 177, Processing Time 0.026 seconds

Apolipoprotein A1 Inhibits TGF-β1-Induced Epithelial-to-Mesenchymal Transition of Alveolar Epithelial Cells

  • Baek, Ae Rin;Lee, Ji Min;Seo, Hyun Jung;Park, Jong Sook;Lee, June Hyuk;Park, Sung Woo;Jang, An Soo;Kim, Do Jin;Koh, Eun Suk;Uh, Soo Taek;Kim, Yong Hoon;Park, Choon Sik
    • Tuberculosis and Respiratory Diseases
    • /
    • v.79 no.3
    • /
    • pp.143-152
    • /
    • 2016
  • Background: Idiopathic pulmonary fibrosis (IPF) is a progressive and lethal lung disease characterized by the accumulation of excessive fibroblasts and myofibroblasts in the extracellular matrix. The transforming growth factor ${\beta}1$ (TGF-${\beta}1$)-induced epithelial-to-mesenchymal transition (EMT) is thought to be a possible source of fibroblasts/myofibroblasts in IPF lungs. We have previously reported that apolipoprotein A1 (ApoA1) has anti-fibrotic activity in experimental lung fibrosis. In this study, we determine whether ApoA1 modulates TGF-${\beta}1$-induced EMT in experimental lung fibrosis and clarify its mechanism of action. Methods: The A549 alveolar epithelial cell line was treated with TGF-${\beta}1$ with or without ApoA1. Morphological changes and expression of EMT-related markers, including E-cadherin, N-cadherin, and ${\alpha}$-smooth muscle actin were evaluated. Expressions of Smad and non-Smad mediators and TGF-${\beta}1$ receptor type 1 ($T{\beta}RI$) and type 2 ($T{\beta}RII$) were measured. The silica-induced lung fibrosis model was established using ApoA1 overexpressing transgenic mice. Results: TGF-${\beta}1$-treated A549 cells were changed to the mesenchymal morphology with less E-cadherin and more N-cadherin expression. The addition of ApoA1 inhibited the TGF-${\beta}1$-induced change of the EMT phenotype. ApoA1 inhibited the TGF-${\beta}1$-induced increase in the phosphorylation of Smad2 and 3 as well as that of ERK and p38 mitogen-activated protein kinase mediators. In addition, ApoA1 reduced the TGF-${\beta}1$-induced increase in $T{\beta}RI$ and $T{\beta}RII$ expression. In a mouse model of silica-induced lung fibrosis, ApoA1 overexpression reduced the silica-mediated effects, which were increased N-cadherin and decreased E-cadherin expression in the alveolar epithelium. Conclusion: Our data demonstrate that ApoA1 inhibits TGF-${\beta}1$-induced EMT in experimental lung fibrosis.

Conditioned Media of RAW 264.7 Cells Stimulated with Phellinus linteus Extract Regulates the Epithelial-mesenchymal Transition in Prostate Cancer Cells (상황버섯에 의해 활성화된 RAW 264.7 대식세포주 배양액의 인간 전립선암 세포주의 epithelial-mesenchymal transition 조절)

  • Kang, Taewoo;An, Hyun-Hee;Park, Sul-Gi;Yu, Sun-Nyoung;Hwang, You-Lim;Kim, Ji-Won;Ahn, Soon-Cheol
    • Journal of Life Science
    • /
    • v.29 no.8
    • /
    • pp.904-915
    • /
    • 2019
  • Prostate cancer (PCa) is one of the most metastatic tumor. Although hormone therapy or surgical castration is mostly conducted to treat PCa, it has a lot of side effects. Recently, many researchers have been exploring the tumor microenvironment to remedy these circumstances. Immune cells, especially macrophages, are an important composition of the tumor microenvironment. Under normal conditions, macrophages exhibit mild tumoricidal activity against tumors. However, once activated by interferon gamma or lipopolysaccharides, macrophages can kill cancer cells directly or indirectly by secreting cytokines and chemokines. In this study, murine macrophage RAW 264.7 cells were treated with Phellinus linteus extract. To analyze their pro-inflammatory phenotype, we were used several assays such as a real-time polymerase chain reaction, an enzyme-linked immunosorbent and nitric oxide assay. Prostate cancer cells were treated with the RAW 264.7-conditioned media, which was identified as a pro-inflammatory nature, for 48 h, and the expression of epithelial-mesenchymal transition (EMT)-related genes was determined. Not only N-cadherin, Snail, Twist, Slug, and Cadherin 11, which are mechenchymal-related proteins, were decrease, but epithelial marker of E-cadherin was increased. In addition, the mRNA level of vimentin, ccl2, and vegfa were decreased, as the EMT is closely related to the migration and invasion of cancer cells. In conclusion, the RAW 264.7-conditioned media stimulated with P. linteus extract inhibited migration and invasion and regulated the EMT pathway in human prostate cancer cells.

Aberrant Expression of the Autocrine Motility Factor Receptor Correlates with Poor Prognosis and Promotes Metastasis in Gastric Carcinoma

  • Huang, Zhen;Zhang, Neng;Zha, Lang;Mao, Hong-Chao;Chen, Xuan;Xiang, Ji-Feng;Zhang, Hua;Wang, Zi-Wei
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.2
    • /
    • pp.989-997
    • /
    • 2014
  • AMFR, autocrine motility factor receptor, also called gp78, is a cell surface cytokine receptor which has a dual role as an E3 ubiquitin ligase in endoplasmic reticulum-associated degradation. AMFR expression is associated with tumor malignancy. We here investigated the clinical significance of AMFR and its role in metastasis and prognosis in gastric cancer. Expression of AMFR, E-cadherin and N-cadherin in cancer tissues and matched adjacent normal tissues from 122 gastric cancer (GC) patients undergoing surgical resection was assessed by immunohistochemistry. Levels of these molecules in 17 cases selected randomly were also analysed by Western blotting. AMFR expression was significantly increased in gastric cancer tissues, and associated with invasion depth and lymph node metastasis. Kaplan-Meier analysis showed AMFR expression correlated with poor overall survival and an increased risk of recurrence in the GC cases. Cox regression analysis suggested AMFR to be an independent predictor for overall and recurrence-free survival. E-cadherin expression was decreased in gastric cancer tissues; conversely, N-cadherin was increased. Expression of AMFR negatively correlated with E-cadherin expression, whereas N-cadherin expression showed a significant positive correlation with AMFR expression. AMFR might be involved in the regulation of epithelial-mesenchymal transition, with aberrant expression correlating with a poor prognosis and promoting invasion and metastasis in GCs.

TP53I11 suppresses epithelial-mesenchymal transition and metastasis of breast cancer cells

  • Xiao, Tongqian;Xu, Zhongjuan;Zhang, Hai;Geng, Junsa;Qiao, Yong;Liang, Yu;Yu, Yanzhen;Dong, Qun;Suo, Guangli
    • BMB Reports
    • /
    • v.52 no.6
    • /
    • pp.379-384
    • /
    • 2019
  • Epithelial-mesenchymal transition (EMT) is widely-considered to be a modulating factor of anoikis and cancer metastasis. We found that, in MDA-MB-231 cells, TP53I11 (tumor protein P53 inducible protein 11) suppressed EMT and migration in vitro, and inhibited metastasis in vivo. Our findings showed that hypoxic treatment upregulated the expression of $HIF1{\alpha}$, but reduced TP53I11 protein levels and TP53I11 overexpression reduced $HIF1{\alpha}$ expression under normal culture and hypoxicconditions, and in xenografts of MDA-MB-231 cells. Considering $HIF1{\alpha}$ is a master regulator of the hypoxic response and that hypoxia is a crucial trigger of cancer metastasis, our study suggests that TP53I11 may suppress EMT and metastasis by reducing $HIF1{\alpha}$ protein levels in breast cancer cells.

Aurora kinase A induces migration and invasion by inducing epithelial-to-mesenchymal transition in colon cancer cells

  • Hong, On-Yu;Kang, Sang Yull;Noh, Eun-Mi;Yu, Hong-Nu;Jang, Hye-Yeon;Kim, Seong-Hun;Hong, Jingyu;Chung, Eun Yong;Kim, Jong-Suk
    • BMB Reports
    • /
    • v.55 no.2
    • /
    • pp.87-91
    • /
    • 2022
  • Aurora kinase is a family of serine/threonine kinases intimately associated with mitotic progression and the development of human cancers. Studies have shown that aurora kinases are important for the protein kinase C (PKC)-induced invasion of colon cancer cells. Recent studies have shown that aurora kinase A promotes distant metastasis by inducing epithelial-to-mesenchymal transition (EMT) in colon cancer cells. However, the role of aurora kinase A in colon cancer metastasis remains unclear. In this study, we investigated the effects of aurora kinase A on PKC-induced cell invasion, migration, and EMT in human SW480 colon cancer cells. Treatment with 12-O-tetradecanoylphorbol-13-acetate (TPA) changed the expression levels of EMT markers, increasing α-SMA, vimentin, and MMP-9 expression and decreasing E-cadherin expression, with changes in cell morphology. TPA treatment induced EMT in a PKC-dependent manner. Moreover, the inhibition of aurora kinase A by siRNAs and inhibitors (reversine and VX-680) suppressed TPA-induced cell invasion, migration, and EMT in SW480 human colon cells. Inhibition of aurora kinase A blocked TPA-induced vimentin and MMP-9 expression, and decreased E-cadherin expression. Furthermore, the knockdown of aurora kinase A decreased the transcriptional activity of NF-κB and AP-1 in PKC-stimulated SW480 cells. These findings indicate that aurora kinase A induces migration and invasion by inducing EMT in SW480 colon cancer cells. To the best of our knowledge, this is the first study that showed aurora kinase A is a key molecule in PKC-induced metastasis in colon cancer cells.

Effect of Grape Seed Proanthocyanidins on Tumor Vasculogenic Mimicry in Human Triple-negative Breast Cancer Cells

  • Luan, Yun-Yan;Liu, Zi-Min;Zhong, Jin-Yi;Yao, Ru-Yong;Yu, Hong-Sheng
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.2
    • /
    • pp.531-535
    • /
    • 2015
  • Vasculogenic mimicry (VM) refers to the unique ability of highly aggressive tumor cells to mimic the pattern of embryonic vasculogenesis, which was associated with invasion and metastasis. The grape seed proanthocyanidins (GSPs) had attracted much attention as a potential bioactive anti-carcinogenic agent. However, GSPs regulation of VM and its possible mechanisms in a triple-negative breast cancer cells (TNBCs) remain not clear. Therefore, we examined the effect of GSPs on VM information in HCC1937 cell model. In this study, we identified the VM structure via the three-dimensional (3D) matrix in vitro. Cell viability was measured using the CCK8 assay. The effects of GSPs on human triple-negative breast cancer cells (TNBCs) HCC1937 in terms of related proteins of VM information were determined using western blot analysis. In vitro, the tubular networks were found in highly invasive HCC1937 cells but not in the non-invasive MCF-7 cells when plated on matrigel. The number of vascular channels was significantly reduced when cells were exposed in GSPs ($100{\mu}g$/ml) and GSPs ($200{\mu}g/mL$) groups (all p<0.001). Furthermore, we found that treatment with GSPs promoted transition of the mesenchymal state to the epithelial state in HCC1937 cells as well as reducing the expression of Twist1 protein, a master EMT regulator.GSPs has the ability to inhibit VM information by the suppression of Twist1 protein that could be related to the reversal of epithelial-to-mesenchymal (EMT) process. It is firstly concluded that GSPs may be an p otential anti-VM botanical agent for human TNBCs.

HOXA9 is Underexpressed in Cervical Cancer Cells and its Restoration Decreases Proliferation, Migration and Expression of Epithelial-to-Mesenchymal Transition Genes

  • Alvarado-Ruiz, Liliana;Martinez-Silva, Maria Guadalupe;Torres-Reyes, Luis Alberto;Pina-Sanchez, Patricia;Ortiz-Lazareno, Pablo;Bravo-Cuellar, Alejandro;Aguilar-Lemarroy, Adriana;Jave-Suarez, Luis Felipe
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.3
    • /
    • pp.1037-1047
    • /
    • 2016
  • HOX transcription factors are evolutionarily conserved in many different species and are involved in important cellular processes such as morphogenesis, differentiation, and proliferation. They have also recently been implicated in carcinogenesis, but their precise role in cancer, especially in cervical cancer (CC), remains unclear. In this work, using microarray assays followed by the quantitative polymerase chain reaction (qPCR), we found that the expression of 25 HOX genes was downregulated in CC derived cell lines compared with non-tumorigenic keratinocytes. In particular, the expression of HOXA9 was observed as down-modulated in CC-derived cell lines. The expression of HOXA9 has not been previously reported in CC, or in normal keratinocytes of the cervix. We found that normal CC from women without cervical lesions express HOXA9; in contrast, CC cell lines and samples of biopsies from women with CC showed significantly diminished HOXA9 expression. Furthermore, we found that methylation at the first exon of HOXA9 could play an important role in modulating the expression of this gene. Exogenous restoration of HOXA9 expression in CC cell lines decreased cell proliferation and migration, and induced an epithelial-like phenotype. Interestingly, the silencing of human papilloma virus (HPV) E6 and E7 oncogenes induced expression of HOXA9. In conclusion, controlling HOXA9 expression appears to be a necessary step during CC development. Further studies are needed to delineate the role of HOXA9 during malignant progression and to afford more insights into the relationship between downmodulation of HOXA9 and viral HPV oncoprotein expression during cercical cancer development.

Expression and Significance of Twist and E-cadherin in Ovarian Cancer Tissues

  • Wang, Wen-Shuang;Yu, Shou-Li;Yang, Xing-Sheng;Chang, Shu-De;Hou, Jian-Qing
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.2
    • /
    • pp.669-672
    • /
    • 2013
  • Objective: To investigate the expression of Twist and E-cadherin in ovarian cancer tissues as well as the role of epithelial-mesenchymal transformation (EMT) in ovarian cancer metastasis. Method: The expressions of Twist and E-cadherin in 54 cases of ovarian cancer and paracancerous tissues were detected by Western blottin g and reverse transcriptase polymerase chain reaction. We used RNA interference to silence Twist expression in human ovarian cancer cell line, and detected E-cadherin expression using Western blotting. Results: There was an increase in the relative abundance of Twist proteins and a decrease in E-cadherin in ovarian cancer compared with normal ovary tissues (P < 0.05). The expression levels of Twist and E-cadherin mRNA were $1.49{\pm}0.53$ and $0.82{\pm}0.24$ in ovarian cancer, and $1.14{\pm}0.38$ and $1.08{\pm}0.19$ in paracancerous tissues, respectively. The difference between the indicators in ovarian cancer and in paracancerous tissues was statistically significant (P < 0.05). When the Twist expression was silenced in an ovarian cancer cell line, the expression of the E-cadherin protein increased (P<0.05). Conclusion: The expression of Twist is upregulated, whereas that of E-cadherin is downregulated in ovarian cancer. EMT, mediated by Twist, may be correlated with ovarian cancer metastasis.

Snail Promotes Cancer Cell Proliferation via Its Interaction with the BIRC3

  • Rho, Seung Bae;Byun, Hyun-Jung;Kim, Boh-Ram;Lee, Chang Hoon
    • Biomolecules & Therapeutics
    • /
    • v.30 no.4
    • /
    • pp.380-388
    • /
    • 2022
  • Snail is implicated in tumour growth and metastasis and is up-regulated in various human tumours. Although the role of Snails in epithelial-mesenchymal transition, which is particularly important in cancer metastasis, is well known, how they regulate tumour growth is poorly described. In this study, the possible molecular mechanisms of Snail in tumour growth were explored. Baculoviral inhibitor of apoptosis protein (IAP) repeat-containing protein 3 (BIRC3), a co-activator of cell proliferation during tumourigenesis, was identified as a Snail-binding protein via a yeast two-hybrid system. Since BIRC3 is important for cell survival, the effect of BIRC3 binding partner Snail on cell survival was investigated in ovarian cancer cell lines. Results revealed that Bax expression was activated, while the expression levels of anti-apoptotic proteins were markedly decreased by small interfering RNA (siRNA) specific for Snail (siSnail). siSnail, the binding partner of siBIRC3, activated the tumour suppressor function of p53 by promoting p53 protein stability. Conversely, BIRC3 could interact with Snail, for this reason, the possibility of BIRC3 involvement in EMT was investigated. BIRC3 overexpression resulted in a decreased expression of the epithelial marker and an increased expression of the mesenchymal markers. siSnail or siBIRC3 reduced the mRNA levels of matrix metalloproteinase (MMP)-2 and MMP-9. These results provide evidence that Snail promotes cell proliferation by interacting with BIRC3 and that BIRC3 might be involved in EMT via binding to Snail in ovarian cancer cells. Therefore, our results suggested the novel relevance of BIRC3, the binding partner of Snail, in ovarian cancer development.

Inhibition of the Interleukin-11-STAT3 Axis Attenuates Hypoxia-Induced Migration and Invasion in MDA-MB-231 Breast Cancer Cells

  • Lim, Ji-Hong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.18 no.5
    • /
    • pp.391-396
    • /
    • 2014
  • Although interleukin-11 (IL-11) has been reported to be elevated in hypoxic tumors and has been associated with a poor prognosis in various cancers, little is known about its precise role in promoting metastasis in hypoxic tumors. In the present study, the molecular mechanism underlying the effects of IL-11 on MDA-MB-231 breast cancer cells migration and invasion in relation to metastasis under hypoxic conditions has been defined. Inhibition of IL-11 expression or function using small interfering RNA (siRNA) or a neutralizing antibody attenuated hypoxic MDA-MB-231 breast cancer cell migration and invasion through down-regulation of matrix metalloproteinases (MMPs) and activation of epithelial-to-mesenchymal transition (EMT) related gene expression. In addition, hypoxia-induced IL-11 increased STAT3 phosphorylation and STAT3 knockdown suppressed hypoxic MDA-MB-231 breast cancer cell invasion due to reduced MMP levels and reprogrammed EMT-related gene expression. These results suggest that one of the hypoxic metastasis pathways and the regulation of this pathway could be a potential target for novel cancer therapeutics.