• Title/Summary/Keyword: Epithelial cell adhesion molecule

Search Result 25, Processing Time 0.022 seconds

Specific Targeting of Fluorescein Isothiocyanate with Ep-CAM Antibody(Specific targeting of FITC with Ep-CAM Antibody)

  • Lee, Young-Tae;Tae, Gun-Sik
    • Journal of Photoscience
    • /
    • v.10 no.3
    • /
    • pp.237-240
    • /
    • 2003
  • The tetradecameric peptide (K47-K60) near the NH$_2$-terminal region of epithelial-cell adhesion molecule (Ep-CAM) was chosen as antigenic site and a polyclonal antibody was generated, which could recognize Ep-CAM from the mouse colon tissue or the colon cancer cell, CT-26, in Western blot analysis. Then, the fluorescein isothiocyanate (FITC), a fluorescence dye, was conjugated with the affinity purified Ep-CAM antibody using thiocyanate and the amino groups of FITC and antibody, respectively. The molar ratio of FITC to antibody was estimated approximately 1.86 to 1.00 by measuring the optical densities at 492 nm and 280 nm. Ep-CAM antibody-FITC conjugate was then used for immunohistochemistry of the CT-26 cells. Judging from the shapes formed by fluorescence, the Ep-CAM antibody could delivered FITC to the surface of cells in which Ep-CAM was expressed. This result implies that Ep-CAM antibody could be also used for the tissue-specific delivery of the photosensitizer to the target protein via antigen-antibody interaction.

  • PDF

Relationship between ganglioside expression and anti-cancer effects of a plant-derived antibody in breast cancer cells

  • Ju, Won Seok;Song, Ilchan;Park, Se-Ra;Seo, Sang Young;Cho, Jin Hyoung;Min, Sung-Hun;Kim, Dae-Heon;Kim, Ji-Su;Kim, Sun-Uk;Park, Soon Ju;Ko, Kisung;Choo, Young-Kug
    • Journal of Plant Biotechnology
    • /
    • v.46 no.3
    • /
    • pp.217-227
    • /
    • 2019
  • Production of therapeutic monoclonal antibodies (mAbs) using a plant platform has been considered an alternative to the mammalian cell-based production system. A plant-derived mAb CO17-1AK ($mAb^P$ COK) can specifically bind to various types of cancer cell lines. The target protein of $mAb^P$ COK is the epithelial cell adhesion molecule (EpCAM) highly expressed in human epithelial cancer cells, including breast and colorectal cancer cells. It has been hypothesized that its overexpression supports tumor growth and metastasis. A ganglioside is extended well beyond the surfaces of the various cell membranes and has roles in cell growth, inflammation, differentiation, and carcinogenesis. However, the regulation of EpCAM gene expression in breast cancers and the role of gangliosides in oncogenesis are unclear. Here, the purpose of this study was to determine the effects of $mAb^P$ COK on human breast cancer cell proliferation, apoptosis, and ganglioside expression patterns. Our results show that treatment with $mAb^P$ COK suppressed the growth of breast cancer cells and induced apoptotic cell death. It also upregulated the expression of metastasis-related gangliosides in breast cancer cells. Thus, treatment with $mAb^P$ COK may have chemo-preventive therapeutic effects against human breast cancer.

Cell-Specific Targeting of Texas Red with Anti-Ep-CAM Antibody

  • Lee, Soo-Chul;Tae, Gun-Sik
    • Journal of Photoscience
    • /
    • v.12 no.3
    • /
    • pp.123-127
    • /
    • 2005
  • The polyclonal antibody was generated against the peptide fragment of 62 amino acid residues (D 181-T242) near the COOH-terminal region of the extracellular domain of epithelial-cell adhesion molecule (Ep-CAM) and shown to be able to recognize Ep-CAM in competitive ELISA. Then, sulforhodamine 101 acid chloride (so called Texas red), a fluorescence dye, was conjugated to the affinity-purified anti-Ep-CAM antibody utilizing the reaction between the aliphatic amines of antibody and the sulfonyl chloride of Texas red. The molar ratio of Texas red to antibody was estimated to be approximately 1.86 by measuring optical densities at 280 nm and 596 nm, implying that the two molecules of Texas red at most were conjugated to antibody. The anti-Ep-CAM antibody-Texas red conjugate was then used for immunohistochemistry of CT-26 murine colon carcinoma cells. Based upon the fluorescence microscope images, anti-Ep-CAM antibody is able to deliver Texas red specifically to the surface of CT-26 cells on which Ep-CAM was actively expressed. This result indicates that anti-Ep-CAM antibody could be useful for the tissue-specific delivery of photosensitizers via antigen-antibody interaction.

  • PDF

Effects of Antioxidant Tempol on Systematic Inflammation and Endothelial Apoptosis in Emphysematous Rats Exposed to Intermittent Hypoxia

  • Zhao, Haiyan;Zhao, Yaping;Li, Xin;Xu, Leiqian;Jiang, Fangxin;Hou, Wanju;Dong, Lixia;Cao, Jie
    • Yonsei Medical Journal
    • /
    • v.59 no.9
    • /
    • pp.1079-1087
    • /
    • 2018
  • Purpose: Obstructive sleep apnea and chronic obstructive pulmonary disease are independent risk factors of cardiovascular disease (CVD), and their coexistence is known as overlap syndrome (OS). Endothelial dysfunction is the initial stage of CVD; however, underlying mechanisms linking OS and CVD are not well understood. The aim of this study was to explore whether OS can lead to more severe inflammation and endothelial apoptosis by promoting endothelial dysfunction, and to assess the intervention effects of antioxidant tempol. Materials and Methods: Male Wistar rats (n=66) were exposed to normal oxygen [normal control (NC) group], intermittent hypoxia (IH group), cigarette smoke (CH group), as well as cigarette smoke and IH (OS group). Tempol intervention was assessed in OS group treated with tempol (OST group) or NaCl (OSN group). After an 8-week challenge, lung tissues, serum, and fresh blood were harvested for analysis of endothelial markers and apoptosis. Results: The levels of intracellular adhesion molecule-1, vascular cellular adhesion molecule-1, and apoptosis in circulating epithelial cells were the highest in OS group and the lowest in NC group. These levels were all greater in IH group than in CH group, and were lower in OST group than in OS and OSN groups (all p<0.001). Conclusion: Synergistic effects of IH with cigarette smoke-induced emphysema produce a greater inflammatory status and endothelial apoptosis. OS-related inflammation and endothelial cell apoptosis may play important roles in promoting cardiovascular dysfunction, and antioxidant tempol could achieve a partial protective effect.

Novel glutathione-containing dry-yeast extracts inhibit eosinophilia and mucus overproduction in a murine model of asthma

  • Kim, Yun-Ho;Choi1, Yean-Jung;Lee, Eun-Jung;Kang, Min-Kyung;Park, Sin-Hye;Kim, Dong Yeon;Oh, Hyeongjoo;Park, Sang-Jae;Kang, Young-Hee
    • Nutrition Research and Practice
    • /
    • v.11 no.6
    • /
    • pp.461-469
    • /
    • 2017
  • BACKGROUND/OBSECTIVE: Airway inflammation by eosinophils, neutrophils and alveolar macrophages is a characteristic feature of asthma that leads to pathological subepithelial thickening and remodeling. Our previous study showed that oxidative stress in airways resulted in eosinophilia and epithelial apoptosis. The current study investigated whether glutathione-containing dry yeast extract (dry-YE) ameliorated eosinophilia, goblet cell hyperplasia and mucus overproduction. MATERIALS/METHOD: This study employed $2{\mu}g$/mL lipopolysaccharide (LPS)- or 20 ng/mL eotaxin-1-exposed human bronchial epithelial cells and ovalbumin (OVA)-challenged mice. Dry-YE employed in this study contained a significant amount of glutathione (140 mg in 100 g dry yeast). RESULTS: Human bronchial epithelial cell eotaxin-1 and mucin 5AC (MUC5AC) were markedly induced by the endotoxin LPS, which was dose-dependently attenuated by nontoxic dry-YE at 10-50 ${\mu}g$/mL. Moreover, dry-YE inhibited the MUC5AC induction enhanced by eotaxin-1, indicating that eotaxin-1-mediated eosinophilia may prompt the MUC5AC induction. Oral supplementation with 10-100 mg/kg dry-YE inhibited inflammatory cell accumulation in airway subepithelial regions with a reduction of lung tissue level of intracellular adhesion molecule-1. In addition, ${\geq}50$ mg/kg dry-YE diminished the lung tissue levels of eotaxin-1, eosinophil major basic protein and MUC5AC in OVA-exposed mice. Alcian blue/periodic acid schiff staining revealed that the dry-YE supplementation inhibited goblet cell hyperplasia and mucus overproduction in the trachea and bronchiolar airways of OVA-challenged mice. CONCLUSIONS: Oxidative stress may be involved in the induction of eotaxin-1 and MUC5AC by endotoxin episode and OVA challenge. Dry-YE effectively ameliorated oxidative stress-responsive epithelial eosinophilia and mucus-secreting goblet cell hyperplasia in cellular and murine models of asthma.

Establishment of Highly Tumorigenic Human Gastric Carcinoma Cell Lines from Xenograft Tumors in Mice

  • Song, Kyung-A;Park, Jihyun;Kim, Ha-Jung;Kang, Myung Soo;Kim, Sun Young
    • Biomedical Science Letters
    • /
    • v.23 no.3
    • /
    • pp.238-250
    • /
    • 2017
  • Patient's primary tumor-derived tumor cell lines likely represent ideal tools for human tumor biology in vitro and in vivo. Here, we describe eight human gastric carcinoma cell lines derived from established tumors in vivo upon subcutaneous transplantation of primary gastric carcinoma specimens in BALB/c nude mice. These xenografted gastric tumor cell lines (GTX) displayed close similarity with primary gastric tumor tissues in their in vivo growth pattern and genomic alterations. GTX-085 cells were resistant to cisplatin, while GTX-087 was the most sensitive cell line. GTX-085 was the only cell line showing a metastatic potential. Epithelial cell adhesion molecule (EPCAM) expression was especially strong in all tissue samples, as well as in cell cultures. GTX-139, the largest tumor graft obtained after injection, displayed distinct expression of CD44v6, fibroblast growth factor receptor 2 (FGFR2), and prominin 1 (PROM1, also known as CD133). In summary, we established eight xenograft gastric cancer cell lines from gastric cancer patient tissues, with their histological and molecular features consistent with those of the primary tumors. The established GTX cell lines will enable future studies of their responses to various treatments for gastric cancer.

ROLE OF DCC(DELETED IN COLORECTAL CANCER) GENE IN ORAL SQUAMOUS CELL CARCINOMA (구강편평상피암종에서 DCC 유전자의 역할)

  • Ko, Seong-Kyu;Han, Se-Jin;Kim, Kyung-Wook
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.34 no.5
    • /
    • pp.518-524
    • /
    • 2008
  • Chromosome 18q alteration plays a key role in colorectal tumorigenesis, and loss of heterozygosity at 18q is associated with a poor prognosis in colon cancer. DCC(Deleted in Colorectal Cancer) is a putative tumor- suppressor gene at 18q21 that encodes a transmembrane protein with structural similarity to neural cell adhesion molecule that is involved in both epithelial and neuronal cell differentiation. DCC is implicated in regulation of cell growth, survival and proliferation. Thus, tumor progression in squamous cell carcinoma, stomach cancer, colorectal cancer correlates with downregulation of DCC expression. The mechanism for DCC suppression is associated with hypermethylation of the DCC gene promoter region. Hence, the goal of this study is to identify the promoter methylation responsible for the down-regulation of DCC expression in oral squamous cell carcinoma. 12 of tissue specimens for the study are excised and gathered from 12 patients who are diagnosed as SCC in department of OMS, dental hospital, dankook university. To find expression of DCC in each tissue samples, immunohistochemical staining, RT-PCR gene analysis and methylation specific PCR are processed. The results are as follows. 1. In the DCC gene RT-PCR analysis, 5(41.6%) of 12 specimens of oral squamous cell carcinoma did not expressed DCC gene. 2. In the promoter methylation specific PCR analysis, 5(41.6%) of 12 specimens showed promoter methylation of DCC gene. 3. In the immunohistochemical staining of poor differentiated and invasive oral squamous cell carcinoma, loss of DCC expression was observed. These findings suggest that methylation of the DCC gene may play a role in loss of gene expression in invasive oral squamous cell carcinoma.

Circulating Tumor Cell Detection in Lung Cancer Animal Model

  • Chong, Yooyoung;Jung, Yong Chae;Hwang, Euidoo;Cho, Hyun Jin;Kang, Min-Woong;Na, Myung Hoon
    • Journal of Chest Surgery
    • /
    • v.54 no.6
    • /
    • pp.460-465
    • /
    • 2021
  • Background: Metastasis and recurrence of primary cancer are the main causes of cancer mortality. Disseminated tumor cells refer to cancer cells that cause metastasis from primary cancer to other organs. Several recent studies have suggested that circulating tumor cells (CTCs) are associated with the clinical stage, cancer recurrence, cancer metastasis, and prognosis. There are several methods of isolating CTCs from whole blood; in particular, using a membrane filtration system is advantageous due to its cost-effectiveness and availability in clinical settings. In this study, an animal model of lung cancer was established in nude mice using the human large cell lung cancer cell line H460. Methods: Six-week-old nude mice were used. The H460 lung cancer cell line was injected subcutaneously into the nude mice. Blood samples were obtained from the orbital area before cell line injection, 2 weeks after injection, and 2 weeks after tumor excision. Blood samples were filtered using a polycarbonate 12-well Transwell membrane (Corning Inc., Corning, NY, USA). An indirect immunofluorescence assay was performed with the epithelial cell adhesion molecule antibody. The number of stained cells was counted using fluorescence microscopy. Results: The average size of the tumor masses was 35.83 mm. The stained cells were counted before inoculation, 2 weeks after inoculation, and 2 weeks after tumor excision. Cancer cells generally increased after inoculation and decreased after tumor resection. Conclusion: The CTC detection method using the commercial polycarbonate 12-well Transwell (Corning Inc.) membrane is advantageous in terms of cost-effectiveness and convenience.

TIMP-1 in the regulation of ECM and apoptosis

  • Liu, Xu-Wen;Jung, Ki-Kyung;Kim, Hyeong-Reh-Choi
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2002.07a
    • /
    • pp.89-96
    • /
    • 2002
  • The importance of apoptosis in normal development and pathogenesis has been well recognized, and explosive progress towards dissecting its commitment step has been made during the past decade. Mitochondria, Apaf-1, caspase, and bcl-2 family members play central roles in the commitment step. However, it is still unclear how upstream cell survival pathways regulate apoptosis. It is also unknown whether the bcl-2 family members have any effect on the upstream survival pathways. We have demonstrated that the anti-apoptotic gene product bcl-2 greatly induces expression of the tissue inhibitor of metalloproteinase-1 (TIMP-1) in human breast epithelial cells. Surprisingly, we found that TIMP-1, like bcl-2, is a potent inhibitor of apoptosis induced by a variety of stimuli. Functional studies indicate that TIMP-1 inhibits a classical apoptotic pathway mediated by caspases, and that focal adhesion kinase (FAK)/Pl 3-kinase and mitogen activated protein kinase (MAPK) are critical for TIMP- 1 -mediated cell survival. We also showed specific association of TIMP-1 with the cell surface. Consistently, a 150-H)a surface protein was identified in MCF10A cells that specifically binds TIMP-1. Taken together, we hypothesize that TIMP-I binding on the cell surface induces a cell survival pathway that regulates the common apoptosis commitment step. The results of these studies will address a new paradigm in the regulation of apoptosis by an extracellular molecule TIMP-1, and also greatly enhance our understanding of TIMP-1's pleiotropic activity in many physiological and pathological processes. This information may also be useful in designing more rational therapeutic interventions aimed at modulating the anti-apoptotic activity of TIMP-1 .

  • PDF

Expression Patterns of Cancer Stem Cell Markers During Specific Celecoxib Therapy in Multistep Rat Colon Carcinogenesis Bioassays

  • Salim, Elsayed I;Hegazi, Mona M;Kang, Jin Seok;Helmy, Hager M
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.3
    • /
    • pp.1023-1035
    • /
    • 2016
  • The purpose of this study was to investigate the role of colon cancer stem cells (CSCs) during chemically-induced rat multi-step colon carcinogenesis with or without the treatment with a specific cyclooxygenase-2 inhibitor drug (celecoxib). Two experiments were performed, the first, a short term 12 week colon carcinogenesis bioassay in which only surrogate markers for colon cancer, aberrant crypt foci (ACF) lesions, were formed. The other experiment was a medium term colon cancer rat assay in which tumors had developed after 32 weeks. Treatment with celecoxib lowered the numbers of ACF, as well as the tumor volumes and multiplicities after 32 weeks. Immunohistochemical proliferating cell nuclear antigen (PCNA) labeling indexes LI (%) were downregulated after treatment by celecoxib. Also different cell surface antigens known to associate with CSCs such as the epithelial cell adhesion molecule (EpCAM), CD44 and CD133 were compared between the two experiments and showed differential expression patterns depending on the stage of carcinogenesis and treatment with celecoxib. Flow cytometric analysis demonstrated that the numbers of CD133 cells were increased in the colonic epithelium after 12 weeks while those of CD44 but not CD133 cells were increased after 32 weeks. Moreover, aldehyde dehydrogenase-1 activity levels in the colonic epithelium (a known CSC marker) detected by ELISA assay were found down-regulated after 12 weeks, but were up-regulated after 32 weeks. The data have also shown that the protective effect of celecoxib on these specific markers and populations of CSCs and on other molecular processes such as apoptosis targeted by this drug may vary depending on the genetic and phenotypic stages of carcinogenesis. Therefore, uncovering these distinction roles of CSCs during different phases of carcinogenesis and during specific treatment could be useful for targeted therapy.