• Title/Summary/Keyword: Epithelial Cells

Search Result 2,412, Processing Time 0.031 seconds

Studies on the Air-Liquid Interface Culture as an Experimental Model for Physiology and Pharmacology of Tracheal Epithelial Cells (기관(氣管) 상피세포 생리 및 약리 실험모델로서의 공기-액체 접면 일차배양법 연구)

  • 이충재;이재흔;석정호;허강민
    • Biomolecules & Therapeutics
    • /
    • v.10 no.4
    • /
    • pp.281-286
    • /
    • 2002
  • In this study, we intended to get a preliminary data for establishing rat tracheal surface epithelial(RTSE) cell culture system as an experimental model for physiology and pharmacology of tracheal epithelial cells. Primary culture on the membrane support and application of the air-liquid interface system at the level of cell layer were performed. The cell growth rate and mucin production rate were measured according to the days in culture. The results were as follows: this culture system was found to manifest mucocilliary differentiation of rat tracheal epithelial cells, the cells were confluent and the quantity of produced and released mucin was highest on culture day 9, the mucin was mainly released to the apical side and tbe free $^3{H}$-glucosamine which was not incorporated to process of synthesis of mucin was left on the basolateral side. Taken together, we suggest that air-liquid interface culture system can be used as a substitute for immersion culture system and as an experimental model for in vivo mucus-hypersecretory diseases.

AMPK-induced mitochondrial biogenesis decelerates retinal pigment epithelial cell degeneration under nutrient starvation

  • Yujin Park;Yeeun Jeong;Sumin Son;Dong-Eun Kim
    • BMB Reports
    • /
    • v.56 no.2
    • /
    • pp.84-89
    • /
    • 2023
  • The implications of nutrient starvation due to aging on the degeneration of the retinal pigment epithelium (RPE) is yet to be fully explored. We examined the involvement of AMPK activation in mitochondrial homeostasis and its relationship with the maintenance of a healthy mitochondrial population and epithelial characteristics of RPE cells under nutrient starvation. Nutrient starvation induced mitochondrial senescence, which led to the accumulation of reactive oxygen species (ROS) in RPE cells. As nutrient starvation persisted, RPE cells underwent pathological epithelial-mesenchymal transition (EMT) via the upregulation of TWIST1, a transcription regulator which is activated by ROS-induced NF-κB signaling. Enhanced activation of AMPK with metformin decelerated mitochondrial senescence and EMT progression through mitochondrial biogenesis, primed by activation of PGC1-α. Thus, by facilitating mitochondrial biogenesis, AMPK protects RPE cells from the loss of epithelial integrity due to the accumulation of ROS in senescent mitochondria under nutrient starvation.

Differentiation of the Fetal Rat Pulmonary Epithelial Cells in Organotypic Culture (기관형 배양에서 흰쥐 태자 폐상피세포의 분화)

  • 홍혜남;조운복
    • The Korean Journal of Zoology
    • /
    • v.35 no.3
    • /
    • pp.295-307
    • /
    • 1992
  • In order to study the differentiation of the epithelial cells during the development of fetal rat lung tissue, histological changeB in organotypic culture and in vivo were examined. Light microscopy and scanning electron microscopy were used to analvre the histological change in rat lung from the 15th nary of gestation to the 111th nary after birth. In organotypic culture system, the pulmonary epithelial cell differentiation was studied by scanning electron microscopy. The results obtained from this study were as follows. 1. During deveiopment of lung, the glandular stage lasted from the Isth day to the lsth naut of gestation; the canalicular stage from the 17th nay to the 19th naut of gestation; the saccuiar stage from 20th nary to the birth. Alveolar stage was observed at the 3rd nary of postnatal rat lung. 2. In organotvpic culture of fetal rat lung cells organized alveolar-like structures resembling those of in uiuo state were observed on the gelatin matrix. In contrast with in vivo state, fetal lung cells formed group of type ll pneumocytes predominently along the contours of the matrix. These cells have large apical surface, short microvilli and secreted materials which may be sunactant. These results suggested that an orsanotypic culture retaining epithelial- -mesenchvmal relationships is appropriate culture model to study the pulmonary epithelial cell (especially type ll pneumocvte) differentation.

  • PDF

The Role of Proprotein Convertases in Upper Airway Remodeling

  • Lee, Sang-Nam;Yoon, Joo-Heon
    • Molecules and Cells
    • /
    • v.45 no.6
    • /
    • pp.353-361
    • /
    • 2022
  • Chronic rhinosinusitis (CRS) is a multifactorial, heterogeneous disease characterized by persistent inflammation of the sinonasal mucosa and tissue remodeling, which can include basal/progenitor cell hyperplasia, goblet cell hyperplasia, squamous cell metaplasia, loss or dysfunction of ciliated cells, and increased matrix deposition. Repeated injuries can stimulate airway epithelial cells to produce inflammatory mediators that activate epithelial cells, immune cells, or the epithelial-mesenchymal trophic unit. This persistent inflammation can consequently induce aberrant tissue remodeling. However, the molecular mechanisms driving disease within the different molecular CRS subtypes remain inadequately characterized. Numerous secreted and cell surface proteins relevant to airway inflammation and remodeling are initially synthesized as inactive precursor proteins, including growth/differentiation factors and their associated receptors, enzymes, adhesion molecules, neuropeptides, and peptide hormones. Therefore, these precursor proteins require post-translational cleavage by proprotein convertases (PCs) to become fully functional. In this review, we summarize the roles of PCs in CRS-associated tissue remodeling and discuss the therapeutic potential of targeting PCs for CRS treatment.

Inhibition of Plasminogen Activator Inhibitor-1 Expression in Smoke-Exposed Alveolar Type II Epithelial Cells Attenuates Epithelial-Mesenchymal Transition

  • Song, Jeong-Sup;Kang, Chun-Mi
    • Tuberculosis and Respiratory Diseases
    • /
    • v.70 no.6
    • /
    • pp.462-473
    • /
    • 2011
  • Background: Smoking is a risk factor for idiopathic pulmonary fibrosis (IPF), but the mechanism of the association remains obscure. There is evidence demonstrating that plasminogen activator inhibitor-1 (PAI-1) is involved in the progression of pulmonary fibrosis. This study was to determine whether the administration of small interfering RNA (siRNA) targeting PAI-1 or PAI-1 inhibitor to the cigarette smoking extract (CSE)-exposed rat alveolar type II epithelial cells (ATII cells) limits the epithelial-mesenchymal transition (EMT). Methods: ATII cells were isolated from lung of SD-rat using percoll gradient method and cultured with 5% CSE. The EMT was determined from the ATII cells by measuring the real-time RT PCR and western blotting after the PAI-1 siRNA transfection to the cells and after administration of tiplaxtinin, an inhibitor of PAI-1. The effect of PAI-1 inhibitor was also evaluated in the bleomycin-induced rats. Results: PAI-1 was overexpressed in the smoking exposed ATII cells and was directly associated with EMT. The EMT from the ATII cells was suppressed by PAI-1 siRNA transfection or administration of tiplaxtinin. Signaling pathways for EMT by smoking extract were through the phosphorylation of SMAD2 and ERK1/2, and finally Snail expression. Tiplaxtinin also suppressed the pulmonary fibrosis and PAI-1 expression in the bleomycin-induced rats. Conclusion: Our data shows that CSE induces rat ATII cells to undergo EMT by PAI-1 via SMAD2-ERK1/2-Snail activation. This suppression of EMT by PAI-1 siRNA transfection or PAI-1 inhibitor in primary type II alveolar epithelial cells might be involved in the attenuation of bleomycin-induced pulmonary fibrosis in rats.

Inductive Effects of Vibrio vulnificus Infections on Cytotoxic Activity and Expression of Inflammatory Cytokine Genes in Human Intestinal Epithelial Cells

  • Lee, Byung-Cheol;Kim, Tae-Sung
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.132.2-132.2
    • /
    • 2003
  • Vibrio vulnificus, a Gram-negative estuarine bacterium, is the causative agent of food-borne diseases, such as life-threatening septicemia. V. vulnificus penetrating into the intestinal epithelial barrier stimulates an inflammatory response in the adjacent intestinal mucosa. Therefore, interaction between V. vulnificus and intestinal cells is important for understanding of both the immunology of mucosal surfaces and V. vulnificus. In this study we investigated the effects of V. vulnificus infection on cytokine gene expression of human intestinal epithelial cells, Caco-2 and INT-407 cells. (omitted)

  • PDF

Expression of Plasminogen Activators in Uterine Epithelial Cells of Pre-ovulatory Phase in Pigs (돼지의 배란 전 자궁내막 상피세포 내 Plasminogen Activators의 발현)

  • HwangBo, Yong;Lee, Sang-Hee;Cha, Hye-Jin;Song, Eun-Ji;Lee, Seung-Tae;Lee, Eun-Song;Cheong, Hee-Tae;Yang, Boo-Keun;Park, Choon-Keun
    • Journal of Embryo Transfer
    • /
    • v.28 no.3
    • /
    • pp.257-263
    • /
    • 2013
  • The endometrium undergoes a cyclic growth and tissue remodeling as changes of epithelial cells, and plasminogen activators (PAs) are related to endometrium tissue remodeling. This study was to evulate expression of urokinase-type plasminogen activator (uPA) and tissue-type plasminogen activator (tPA) in porcine uterine epithelial cells. In results, the uPA and tPA were expressed in uterine tissue, epithelium and secretory glands in porcine endometrial cell. In addition, the uPA and tPA were expressed in cultured epithelial cells, and it were mainly expressed in cytoplasm. In porcine uterine tissue and epithelial cells, uPA activity was higher than activity in tPA. In PAs mRNA expression levels, uPA mRNA level was significantly higher than tPA mRNA level (P<0.05). The fluorescence intensity of uPA protein was also higher than fluorescence intensity of tPA protein, and uPA protein expression was significantly higher than in tPA protein expression (P<0.05). Therefore, we suggest that a physiological function in porcine uterine epithelial cells should be more influenced by uPA than in tPA during pre-ovulatory phase.

Characterization and Zoonotic Potential of Uropathogenic Escherichia coli Isolated from Dogs

  • Nam, Eui-Hwa;Ko, Sungjin;Chae, Joon-Seok;Hwang, Cheol-Yong
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.3
    • /
    • pp.422-429
    • /
    • 2013
  • The aim of this study was to investigate the characteristics of canine uropathogenic Escherichia coli (UPEC) and the interaction between canine UPEC and human bladder epithelial cells. Ten E. coli isolates collected from dogs with cystitis were analyzed for antimicrobial resistance patterns, the presence of virulence factors, and biofilm formation. The ability of these isolates to induce cytotoxicity, invade human bladder epithelial cells, and stimulate an immune response was also determined. We observed a high rate of antimicrobial resistance among canine UPEC isolates. All virulence genes tested (including adhesins, iron acquisition, and protectin), except toxin genes, were detected among the canine UPEC isolates. We found that all isolates showed varying degrees of biofilm formation (mean, 0.26; range, 0.07 to 0.82), using a microtiter plate assay to evaluate biofilm formation by the isolates. Cytotoxicity to human bladder epithelial cells by the canine UPEC isolates increased in a time-dependent manner, with a 56.9% and 36.1% reduction in cell viability compared with the control at 6 and 9 h of incubation, respectively. We found that most canine UPEC isolates were able to invade human bladder epithelial cells. The interaction between these isolates and human bladder epithelial cells strongly induced the production of proinflammatory cytokines such as IL-6 and IL-8. We demonstrated that canine UPEC isolates can interact with human bladder epithelial cells, although the detailed mechanisms remain unknown. The results suggest that canine UPEC isolates, rather than dogspecific pathogens, have zoonotic potential.

A STUDY ABOUT THE APOPTOSIS OF EPITHELIAL CELLS IN THE FUSING FETAL RAT PALATE (흰쥐 태아 구개융합부위 상피세포의 아포프토시스에 관한 연구)

  • Lee, Hong-Joo;Cha, Kyung-Suk;Lee, Jin-Woo
    • The korean journal of orthodontics
    • /
    • v.31 no.1 s.84
    • /
    • pp.71-83
    • /
    • 2001
  • The purpose of this study was to Prove that the medial edge epithelial cells covering the secondary palatal shelves were removed by apoptosis during palatal fusion. 12 mature female rats (Suprague-Dawley) were mated overnight with male rats and sacrificed on days 15.0, 16.5, 16.75, 17.0 of pregnancy. The embryos were removed from the uterus and the heads were embedded in paraffin. The paraffin blocks were sectioned and the sections were undergone H-E staining for general histologic feature and TdT staining for detection of apoptotic cells. The obtained results were as follows. k. In the section of 16.0 and 16.5 day embryos, the palatal shelves were prior to contact and no apoptotic cells wereobserved in the medial edge epithelium. At the initial contact of Palatal shelves, there was a few apoptotic cells in the fusing epithelium. 2. In the 16.75 day embryos, the samples that epithelial seams did not lost there continuity, apoptotic cells were rarely seen at the midline epithelial seam. In contrast, a lot of apoptotic cells were observed at epithelial triangles and the junction between palatal shelves and nasal septum. 3. In the 16,75 day embryos, the samples that epithelial seams lost their continuity and disrupted to epithelial islands, large number, of apoptotic cells were observed at epithelial islands and epithelial triangles. Some apoptotic cells were also observed at the oral, nasal epithelium near the midline. 4. In the 17.0 day embryos, most of epithelial islands were disappeared and mesenchymal confluence was achieved. Apoptotic cells were rarely observed in the mesenchymal tissue which replaced epithelial islands, but there were some apoptotic cells at the epithelial triangles, oral and nasal epithelium. From the results of the study, it was revealed that medial edge epithelial cells of fusing palate were removed by apoptosis. Apoptotic cells were found mainly in the disappearing midline epithelial seam and the oral and nasal epithelial triangles at some late stages of palatal fusion.

  • PDF

Isolation and Characterization of Mammary FpithelialStem Cells in Culture (유선상피 간세포의 분리 및 특성연구)

  • ;;Kelly H. Clifton
    • Journal of Life Science
    • /
    • v.10 no.1
    • /
    • pp.37-44
    • /
    • 2000
  • The mammary gland contains a subpopulation of epithelial cells with large proliferative potentials which are the likely targets for carcinogens. These clonogenic cells can proliferate and differentiate into functional glandular structures. Rat mammary epithelial cells (RMEC) were isolated and characterized in vitro. By flow cytometry of RMEC stained with fluorescein isothiocyanate-peanut agglutinin(PNA) and phycoerythrin anti-Thy-1.1 monoclonal antibody, it was possible to four cell subpopulations from 7-8 week old F344 female rat mammary glands: cells negative to both reagents (B-), PNA-positive cells (PNA+), Thy-1.1-positive cells (Thy-1.1+), and cells positive to both reagents (B+). When single PNA+ cells were isolated and cultured in Matrigel with irradiated (∼50 Gray) 3T3 fibroblast feeder layer, they gave rise to multicellular clonal structures of three types: alveolar, foamy alveolar, and squamous colonies. The developed structures were similar to the mammary glands in vivo. These results suggest that some of PNA+ cells possesses many of the characteristics of multipotent clonogenic stem-like cells.

  • PDF