• Title/Summary/Keyword: Epitaxial film

Search Result 269, Processing Time 0.024 seconds

Hot-wall epitaxial growth and characteristic of CdTe films (Hot-wall epitaxy법에 의한 CdTe 박막의 성장과 특성)

  • 박효열;조재혁;진광수;황영훈
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.14 no.4
    • /
    • pp.140-144
    • /
    • 2004
  • CdTe thin films were grown on GaAs (100) substrates by hot wall epitaxy method. From the XRD measurements, it was found that CdTe/GaAs (100) film was grown as a single crystals with the different from growth plane of (III), and growth rate of CdTe thin films was found to be 30 $\AA/sec$ by SEM. To acquire a high quality CdTe thin film, the optimum temperature for the source and substrate are found to be $500^{\circ}C$ and $320^{\circ}C$, respectively, which was checked by PL.

Strain evolution in Tin Oxide thin films deposited by powder sputtering method

  • Cha, Su-Yeon;Gang, Hyeon-Cheol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.283.1-283.1
    • /
    • 2016
  • Tin Oxide(SnO2) has been widely investigated as a transparent conducting oxide (TCO) and can be used in optoelectronic devices such as solar cell and flat-panel displays. It would be applicable to fabricating the wide bandgap semiconductor because of its bandgap of 3.6 eV. In addition, SnO2 is commonly used as gas sensors. To fabricate high quality epitaxial SnO2 thin films, a powder sputtering method was used, in contrast to typical sputtering technique with sintered target. Single crystalline sapphire(0001) substrates were used. The samples were prepared with varying the growth parameters such as gas environment and film thickness. Then, the samples were characterized by using X-ray diffraction, scanning electron microscopy, and atomic force microscopy measurements. We found that the strain evolution of the samples was highly affected by gas environment and growth rate, resulted in the delamination under O2 environment.

  • PDF

Sticking Characteristics in BiSrCaCuO Thin Film Fabricated by Layer-by-Layer Sputtering Method (순차 스퍼터법으로 제작한 BiSrCaCuO 박막의 부착 특성)

  • Cheon, Min-Woo;Park, Yong-Pil;Kim, Jeong-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05d
    • /
    • pp.45-48
    • /
    • 2003
  • BiSrCaCuO thin films were fabricated by atomic layer-by-layer deposition using an ion beam sputtering method. 10 wt% and 90 wt% ozone mixed with oxygen were used with ultraviolet light irradiation to assist oxidation. At early stages of the atomic layer by layer deposition, two dimensional epitaxial growth which covers the substrate surface would be suppressed by the stress and strain caused by the lattice misfit, then three dimensional growth takes place. Since Cu element is the most difficult to oxidize, only Sr and Bi react with each other predominantly, and forms a buffer layer on the substrate in an amorphous-like structure, which is changed to $SrBi_2O_4$ by in-situ anneal.

  • PDF

Epitaxial Growth of BSCCO Films by Leyer-by-Layer Deposition (순차 증착에 의한 BSCCO 박막의 에피택셜 성장)

  • 안준호;박용필;김정호
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.10
    • /
    • pp.855-860
    • /
    • 2001
  • Bi$_2$Sr$_2$CuO$_{x}$(Bi-2201) thin film were fabricated by atomic layer-by -layer deposition using an ion beam sputtering method. 10 wt% and 90 wt% ozone mixed oxygen were used with ultraviolet light irradiation to assist oxidation. XRD and RHEED investigations revealed that a buffer layer is formed at the early stage of deposition (less than 10 unit cell), and then c-axis oriented Bi-2201 grows on top of it.t.

  • PDF

Epitaxial Growth of GaAs Thin Films Using MOCVD (MOCVD를 이용한 GaAs 박막의 에피성장)

  • So, Myoung-Gi
    • Journal of Industrial Technology
    • /
    • v.24 no.B
    • /
    • pp.59-64
    • /
    • 2004
  • GaAs thin films were grown epitaxially by MOCVD method on (001) GaAs substrate. And as a surfactant, Bi(bismuth) thin films were deposited on GaAs buffer layer by using TMBi(trimethylbismuth) source. In-situ reflectance difference spectroscopy(RDS) was used to monitor the surface reconstruction of GaAs and Bi thin films. As the results, under the exposure of TBAs(tertiarybuthylarsine) and hydrogen atmosphere, the surface reconstruction of GaAs was changed from As-rich c($4{\times}4$) to As-rich ($2{\times}4$), which was due to the adsoption and desorption of As dimers. The first bismuth surface related RDS signal was reported. At the deposition temperature of $450^{\circ}C$, Bi-terminated GaAs surface showed the RDS spectrum similar to that of Sb-terminated GaAs surface, possibly a ($2{\times}4$) surface. And Bi surface layers were rapidly evaporated with increasing the deposition temperature($550^{\circ}C$), finally becoming As-terminated ($2{\times}4$) surface.

  • PDF

Bottom photonic crystals-dependent photoluminescence of InGaN/GaN Quantum-Well Blue LEDs (하부 광결정에 따른 InGaN/GaN 양자우물구조의 청색발광 다이오드 발광 특성)

  • Cho, Sung-Nam;Choi, Jae-Ho;Kim, Keun-Joo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.52-54
    • /
    • 2008
  • The authors investigated the InGaN/GaN multi-quantum well blue light emitting diodes with the implements of the photonic crystals fabricated at the top surface of p-GaN layer or the bottom interface of n-GaN layer. The top photonic crystals result in the lattice-dependent photoluminescence spectra for the blue light emitting diodes, which have a wavelength of 450nm. However, the bottom photonic crystal shows a big shift of the photoluminescence peak from 444 nm to 504 nm and played as a role of quality enhancement for the crystal growth of GaN thin film. The micro-Raman spectroscopy shows the improved epitaxial quality of GaN thin film.

  • PDF

A Transmission Electron Microscopy Study of the Initial Stage of $NiSi_2$ Nucleation on the (001) Si ((001) Si에서 $NiSi_2$의 핵생성 초기 상태에 관한 투과전자현미경 연구)

  • Lee, Sang-Ho;Lee, Jeong-Yong
    • Applied Microscopy
    • /
    • v.24 no.4
    • /
    • pp.123-131
    • /
    • 1994
  • In this study the initial stage nucleation and growth of Ni silicide on (001) Si by evaporation and furnace annealing have been investigated by transmission electron microscopy. The pressure was $10^{-6}$ Torr during evaporation and annealing. And the annealing temperature to produce $NiSi_2\;was\;800^{\circ}C$. From the evaporated film, $NiSi_2$ nucleus has grown into Si substrate with an epitaxial orientation relationship. Interfaces between $NiSi_2$ and Si were A-type {111} interfaces and {100} $NiSi_2$ interfaces were also observed at the initial stage of nucleation. Ni silicide grew into Si substrate, but the nucleus partly grew into the evaporated film, with no facets, from the nuclei in the Si substrate. $NiSi_2$ nucleus with (111) habit planes was also observed.

  • PDF

Molecular beam epitaxial growth and characterization of Sb .delta.-doped Si layers using substrate temperature modulation technique (저온 변조 성장 기법을 이용하여 Sb가 ${\delta}$ 도핑된 다층 구조의 Si 분자선 박막 성장과 특성 분석)

  • Le, Chan ho
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.32A no.12
    • /
    • pp.142-148
    • /
    • 1995
  • Sb ${\delta}$-doped Si layers were grown by Si MBE (Molecular Beam Epitaxy) system using substrate temperature modulation technique. The Si substrate temperatures were modulated between 350$^{\circ}C$ and 600$^{\circ}C$. The doping profile was as narrow as 41$\AA$ and the doping concentration of up to 3.5${\times}10^{20}cm^{3}$ was obtained. The film quality was as good as bulk material as verified by RHEED (Reflected High Energy Electron Diffraction), SRP (Spreading Resistance Profiling) and Hall measurement. Since the film quality is not degraded after the growth a Sb ${\delta}$-doped Si layer, the ${\delta}$-doped layers can be repeated as many times as we want. The doping technique is useful for many Si devices including small scale devices and those which utilize quantum mechanical effects.

  • PDF

APPLICATION OF RADIO-FREQUENCY (RF) THERMAL PLASMA TO FILM FORMATION

  • Terashima, Kazuo;Yoshida, Toyonobu
    • Journal of the Korean institute of surface engineering
    • /
    • v.29 no.5
    • /
    • pp.357-362
    • /
    • 1996
  • Several applications of radio-frequency (RF) thermal plasma to film formation are reviewed. Three types of injection plasma processing (IPP) technique are first introduced for the deposition of materials. Those are thermal plasma chemical vapor deposition (CVD), plasma flash evaporation, and plasma spraying. Radio-frequency (RF) plasma and hybrid (combination of RF and direct current(DC)) plasma are next introduced as promising thermal plasma sources in the IPP technique. Experimental data for three kinds of processing are demonstrated mainly based on our recent researches of depositions of functional materials, such as high temperature semiconductor SiC and diamond, ionic conductor $ZrO_2-Y_2O_3$ and high critical temperature superconductor $YBa_2Cu_3O_7-x$. Special emphasis is given to thermal plasma flash evaporation, in which nanometer-scaled clusters generated in plasma flame play important roles as nanometer-scaled clusters as deposition species. A novel epitaxial growth mechanism from the "hot" clusters namely "hot cluster epitaxy (HCE)" is proposed.)" is proposed.osed.

  • PDF

GaN Film Growth Characteristics Comparison in according to the Type of Buffer Layers on PSS (PSS 상 버퍼층 종류에 따른 GaN 박막 성장 특성 비교)

  • Lee, Chang-Min;Kang, Byung Hoon;Kim, Dae-Sik;Byun, Dongjin
    • Korean Journal of Materials Research
    • /
    • v.24 no.12
    • /
    • pp.645-651
    • /
    • 2014
  • GaN is most commonly used to make LED elements. But, due to differences of the thermal expansion coefficient and lattice mismatch with sapphire, dislocations have occurred at about $109{\sim}1010/cm^2$. Generally, a low temperature GaN buffer layer is used between the GaN layer and the sapphire substrate in order to reduce the dislocation density and improve the characteristics of the thin film, and thus to increase the efficiency of the LED. Further, patterned sapphire substrate (PSS) are applied to improve the light extraction efficiency. In this experiment, using an AlN buffer layer on PSS in place of the GaN buffer layer that is used mainly to improve the properties of the GaN film, light extraction efficiency and overall properties of the thin film are improved at the same time. The AlN buffer layer was deposited by using a sputter and the AlN buffer layer thickness was determined to be 25 nm through XRD analysis after growing the GaN film at $1070^{\circ}C$ on the AlN buffer CPSS (C-plane Patterned Sapphire Substrate, AlN buffer 25 nm, 100 nm, 200 nm, 300 nm). The GaN film layer formed by applying a 2 step epitaxial lateral overgrowth (ELOG) process, and by changing temperatures ($1020{\sim}1070^{\circ}C$) and pressures (85~300 Torr). To confirm the surface morphology, we used SEM, AFM, and optical microscopy. To analyze the properties (dislocation density and crystallinity) of a thin film, we used HR-XRD and Cathodoluminescence.