• Title/Summary/Keyword: Epitaxial Growth

Search Result 476, Processing Time 0.027 seconds

On increasing the homogeneity of the properties of epitaxial layers grown from the gas phase, taking into account natural convection and changes in the rate of chemical interaction between materials

  • Pankratov, E.L.
    • Advances in materials Research
    • /
    • v.9 no.2
    • /
    • pp.155-170
    • /
    • 2020
  • In this paper, using the recently introduced analytical approach for the analysis of mass and heat transfer during film growth in reactors for epitaxy from the gas phase, these processes are analyzed taking into account natural convection and the possibility of changing the rate of chemical interaction between reagents. As a result of the analysis, the conditions under which the homogeneity of the grown epitaxial layers increases with a change in the values of the parameters of the growth process are formulated.

The Characteristics of GaAsP/GaP Epitaxial Layer on the epitaxial growth temperature (성장 온도에 따른 GaAsP/GaP Epitaxial Layer의 특성)

  • Lee, Eun-Cheol;Ra, Yong-Choon;Eom, Moon-Jong;Lee, Cheol-Jin;Sung, Man-Young
    • Proceedings of the KIEE Conference
    • /
    • 1997.11a
    • /
    • pp.317-319
    • /
    • 1997
  • We have studied the properties of $GaAs_{1-x}P_x$ epitaxial films on the GaP using VPE method by CVD. The surface carrier concentration and PL power increased with increasing the epitaxial temperature while PL wave length decreased. The Power out of the LED with $GaAs_{1-x}P_x$/GaP structure decreased with increasing the epitaxial temperature while the forward voltage of the LED increased. Specially, The LED of $GaAs_{1-x}P_x$/GaP structure represents good electrical and optical properties when the $GaAs_{1-x}P_x$ layer was epitaxially grown at $810^{\circ}C$.

  • PDF

Optimization of Selective Epitaxial Growth of Silicon in LPCVD

  • Cheong, Woo-Seok
    • ETRI Journal
    • /
    • v.25 no.6
    • /
    • pp.503-509
    • /
    • 2003
  • Selective epitaxial growth (SEG) of silicon has attracted considerable attention for its good electrical properties and advantages in building microstructures in high-density devices. However, SEG problems, such as an unclear process window, selectivity loss, and nonuniformity have often made application difficult. In our study, we derived processing diagrams for SEG from thermodynamics on gas-phase reactions so that we could predict the SEG process zone for low pressure chemical vapor deposition. In addition, with the help of both the concept of the effective supersaturation ratio and three kinds of E-beam patterns, we evaluated and controlled selectivity loss and non-uniformity in SEG, which is affected by the loading effect. To optimize the SEG process, we propose two practical methods: One deals with cleaning the wafer, and the other involves inserting dummy active patterns into the wide insulator to prevent the silicon from nucleating.

  • PDF

Epitaxial Growth of GaAs/GaAs and GaAs/Si by LCVD (레이저 CVD를 이용한 GaAs/GaAs 및 GaAs/Si 결정성장연구)

  • Choi, W.L.;Ku, J.K.;Chung, J.W.;Kwon, O.
    • Proceedings of the KIEE Conference
    • /
    • 1989.11a
    • /
    • pp.79-82
    • /
    • 1989
  • We studied the epitaxial growth of GaAs/GaAs and GaAs/Si by Laser CVD with 193nm ArF pulsed excimer laser. The source gases of TMGa and AsC13 or TMGa-TMAs adducts are mixed with H2, and photolyzed above the substrate which is heated up to around 300$^{\circ}C$. Then the photolyzed atoms are deposited on the silicon or GaAs substrate. The deposited films are analyzed with ESKA depth profiling and X-ray differaction method, which shows that the films on Si and GaAs are stoichiometric and crystalized at such a low temperature. We show a clear evidence for the epitaxial growth of GaAs on Si or GaAs on GaAs at low temperature by excimer laser CVD.

  • PDF

Epitaxial Growth of $Y_2O_3$ films by Ion Beam Assisted Deposition

  • Whang, C.N.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.26-26
    • /
    • 2000
  • High quality epitaxial Y2O3 thin films were prepared on Si(111) and (001) substaretes by using ion beam assisted deposition. As a substrate, clean and chemically oxidized Si wafers were used and the effects of surface state on the film crystallinity were investigated. The crystalline quality of the films were estimated by x-ray scattering, rutherford backscattering spectroscopy/channeling, and high-resolution transmission electron microscopy (HRTEM). The interaction between Y and Si atoms interfere the nucleation of Y2O3 at the initial growth stage, it could be suppressed by the interface SiO2 layer. Therefore, SiO2 layer of the 4-6 layers, which have been known for hindering the crystal growth, could rather enhance the nucleation of the Y2O3 , and the high quality epitaxial film could be grown successfully. Electrical properties of Y2O3 films on Si(001) were measured by C-V and I-V, which revealed that the oxide trap charge density of the film was 1.8$\times$10-8C/$\textrm{cm}^2$ and the breakdown field strength was about 10MV/cm.

  • PDF

GaAs Epitaxial Layer Grown by MBE (II) (MBE에 의한 GaAs 에피택셜 성장(II))

  • Kang, Tae Won;Lee, Jae Jin;Kim, Young Ham;Kim, Jin Hwang;Kim, Bong Ryul
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.23 no.3
    • /
    • pp.376-383
    • /
    • 1986
  • In this paper, we show that the growth rate of MBE GaAs epitaxial layer is controlled entirely by the flux density of the Ga beam, impinging on the substrate surface, and is linearly proportional to the Ga effusion cell temperature and the growth time. According to our investigation of the epitaxial layer surfvace through RHEED, AES, SIMS and SEM, if the growth temperature is maintained above 590\ulcorner, the surface crystal structure, flathness and stoichiometry become significantly enhanced, and the epilayer surface has a smooth mirror-like appearance.

  • PDF

SiC single crystal grown on a seed with an inserted epitaxial layer for the power device application

  • An, Jun-Ho;Kim, Jeong-Gon;Seo, Jeong-Du;Kim, Jeong-Gyu;Gyeon, Myeong-Ok;Lee, Won-Jae;Kim, Il-Su;Sin, Byeong-Cheol;Gu, Gap-Ryeol
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.232-232
    • /
    • 2006
  • SiC single crystal Ingots were prepared onto different seed material using sublimation PVT techniques and then their crystal quality was systematically compared. In this study, the conventional SiC seed material and the new SiC seed material with an inserted SiC epitaxial layer on a seed surface were used as a seed for SiC bulk growth. The inserted epitaxial layer was grown by a sublimation epitaxy method called the CST with a low growth rate of $2{\mu}m/h$ N-type 2"-SIC single crystals exhibiting the polytype of 6H-SiC were successfully fabricated and carrier concentration levels of below $10^{17}/cm^3$ were determined from the absorption spectrum and Hall measurements. The slightly higher growth rate and carrier concentration were obtained in SiC single crystal Ingot grown on new SiC Seed materials with the inserted epitaxial layer on the seed surface, maintaining the high quality.

  • PDF

Analysis on the Flow and Heat Transfer in a Large Scale CVD Reactor for Si Epitaxial Growth (Si 선택적 성장을 위한 대형 CVD 반응기 내의 열 및 유동해석)

  • Jang, Yeon-Ho;Ko, Dong Guk;Im, Ik-Tae
    • Journal of the Semiconductor & Display Technology
    • /
    • v.15 no.1
    • /
    • pp.41-46
    • /
    • 2016
  • In this study, gas flow and temperature distribution in the multi-wafer planetary CVD reactor for the Si epitaxial growth were analyzed. Although the structure of the reactor was simplified as the first step of the study, the three-dimensional analysis was performed taking all these considerations of the revolution of the susceptor and the rotation of satellites into account. From the analyses, a reasonable velocity field and temperature field were obtained. However, it was found that analyses including the upper structure of the reactor were required in order to obtain more realistic temperature results. DCS mole fraction above the satellite surface and the susceptor surface without satellite was compared in order to check the gas species mixing. We found that satellite rotation helped gases to mix in the reactor.

Silicidation of Co/M/(100) Si bilayer Structures (Co/내열금속/(100) Si 이중층 구조의 실리사이드화)

  • 권영재;이종무;배대록;강호규
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.5
    • /
    • pp.505-511
    • /
    • 1998
  • The silicide formation mechanisms of Co/Hf and Co/Nb bilayer on (100) Si have been investigated. We ob-served that crystallographic orientationso f the 500$^{\circ}C$ formed cobalt silcides were different each other with the varying intermediate layers. Epitaxial and non-epitaxial CoSi2 formed simultaneously in Co/Hf/(100Si. While only non-epitaxial CoSi2 formed in Co/Nb/(100) Si. The reason why the crystallographic orientation of CpSi2 is different for those two systems seemed to be relate to the formation and decomposition of stable reaction barriers at high temperature. The stable reaction barrier formed at high temperature could control the uniform diffusion of Co atoms which enables epitaxial growth of CoSi2.

  • PDF