• Title/Summary/Keyword: Epitaxial

Search Result 897, Processing Time 0.031 seconds

Epitaxial Growth of Pulsed-Laser Deposited Bi4Ti3O12/LaAlO3 Thin Films and Bi4Ti3O12/YBa2Cu3O7-x/LaAlO3 Heterostructure (펄스레이저 증착법으로 제작된 $Bi_4Ti_3O_{12}/LaAlO_3$ 박막과 $Bi_4Ti_3O_{12}/YBa_2Cu_3O_{7-x}/LaAlO_3$ 복합구조의 에피 성장)

  • Jo, Wol-Ryeom;Jo, Hak-Ju;No, Tae-Won
    • Korean Journal of Crystallography
    • /
    • v.5 no.2
    • /
    • pp.85-92
    • /
    • 1994
  • Ferroelectric Bi4Ti3012 thin films have been grown on LaAlO(001) by Pulsed-laser deposition. Phase formation and structural films prepared of the films prepared at varigus deposition temperatures are investigated using x-ray diffraction The film grown at 740℃ shows epitaxial growth behavior with c-akis normal to the substrate. N2tBmstiucCures of Bi4Ti3012/YBa2Cu307-x/LaAIO3(001) have been in-situ grown. Even though the a-and b-axes of the Yba2Cu307-x layer show epitaxial growth behavior.

  • PDF

Epitaxial growth and microstructural characterization of $YSi_2$ films on (100)Si substrate (이트리움 실리사이드 박막의 (100)Si 기판상에서의 방향성 성장과 미세조직의 특성)

  • Lee, Young-Ki
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.7 no.1
    • /
    • pp.59-69
    • /
    • 1997
  • The growth and microstructural characterization of epitaxial yttrium silicide ($YSi_2$) on the (100)Si substrate are investigated. The $YSi_2$ film grow epitaxilly through the solid phase reaction during vacuum annealing above $400^{\circ}C$. The epitaxial relationships between the hexagonal $YSi_2$ film and the (100)Si substrate are [0001]$YSi_2$//[011]Si and [0001]$YSi_2$//[011]Si in the (1100)$YSi_2$//(100)Si plane relation. The YSi$_2$ film consists of the two types of domains which have two different azimuthal orientations making an angle of $90^{\circ}$ to each other. The two types of domains in the $YSi_2$film are equivalent in volume fraction and crystalline quality, which has been proved from the equivalent integrated intensities of (2201) asymmetric reflection of X-ray diffraction. The formation of a double -domain structure is discussed on the basis of geometrical matching at interface between the (1100)$YSi_2$ film and the (100)Si substrate, and growth model is proposed.

  • PDF

Epitaxial Growth of Graphene by Surface Segregation and Chemical Vapor Deposition on Ru(0001) Studied with Scanning Tunneling Microscopy (주사형 탐침 현미경을 이용한 Ru(0001) 위 그래핀의 에피탁시얼 성장 조건에 대한 연구)

  • Jang, Won-Jun;Kahng, Se-Jong
    • Journal of the Korean Vacuum Society
    • /
    • v.22 no.6
    • /
    • pp.285-290
    • /
    • 2013
  • Epitaxial graphene on metal substrates provides excellent platforms to study its atomic and electronic structures, and can be grown either by surface segregation of carbon or by chemical vapor deposition. The growth behaviors of the two methods, however, have not been directly compared each other. Here, we studied domain structures of graphene grown by three different methods, surface segregation, post-annealing with adsorbed ethylene, and high-temperature dose of ethylene, using scanning tunneling microscopy. The first two methods resulted in graphene regions with areas of $100nm^2$, whereas the third method showed large area graphene (> $10^4nm^2$) with regular hexagonal Moire patterns, implying that high-temperature dose of ethylene is preferable for further studies on graphene such as additional growth of organic molecules.

Phase sequence in Codeposition and Solid State Reaction of Co-Si System and Low Temperature Epitaxial Growth of $CoSi_2$ Layer (Co-Si계의 동시증착과 고상반응시 상전이 및 $CoSi_2$ 층의 저온정합성장)

  • 박상욱;심재엽;지응준;최정동;곽준섭;백홍구
    • Journal of the Korean Vacuum Society
    • /
    • v.2 no.4
    • /
    • pp.439-454
    • /
    • 1993
  • The phase sequence of codeposited Co-Si alloy and Co/si multilayer thin film was investigated by differential scanning calormetry(DSC) and X-ray diffraction (XRD) analysis, The phase sequence in codeposition and codeposited amorphous Co-Si alloy thin film were CoSilongrightarrow Co2Si and those in Co/Si multilayer thin film were CoSilongrightarrowCo2Silongrightarrow and CoSilongrightarrowCo2Si longrightarrowCoSilongrightarrowCoSi2 with the atomic concentration ration of Co to Si layer being 2:1 and 1:2 respectively. The observed phase sequence was analyzed by the effectvie heat of formatin . The phase determining factor (PDF) considering structural facotr in addition to the effectvie heat of formation was used to explain the difference in the first crystalline phase between codeposition, codeposited amorphous Co-Si alloy thin film and Co/Si multilayer thin film. The crystallinity of Co-silicide deposited by multitarget bias cosputter deposition (MBCD) wasinvestigated as a funcion of deposition temperature and substrate bias voltage by transmission electron microscopy (TEM) and epitaxial CoSi2 layer was grown at $200^{\circ}C$ . Parameters, Ear, $\alpha$(As), were calculate dto quantitatively explain the low temperature epitaxial grpwth of CoSi2 layer. The phase sequence and crystallinity had a stronger dependence on the substrate bias voltage than on the deposition temperature due to the collisional daxcade mixing, in-situ cleannin g, and increase in the number of nucleation sites by ion bombardment of growing surface.

  • PDF

Growth of $In_{0.53}Ga_{0.47}As$ Iattice matched to Inp substrate by low pressure metalorganic chemical vapor deposition (저압 유기금속 화학증착법을 이용한 InP 기판에 격자 일치된 $In_{0.53}Ga_{0.47}As$ 에피층의 성장)

  • 박형수;문영부;윤의준;조학동;강태원
    • Journal of the Korean Vacuum Society
    • /
    • v.5 no.3
    • /
    • pp.206-212
    • /
    • 1996
  • $In_{1-x}Ga_xAs$ epitaxial layers were grown at 76 Torr by low pressure metalorganic chemical vapor deposition (LP-MOCVD). Growth rate did not change much with growth temperature. Surface morphology of $In_{1-x}Ga_xAs$ epitaxial layer was affected by lattice mismatch, growth temperature and $AsH_3/(TMIn+TMGa)$ ratio. A high quality epilayer showed a full width at half maximum of 2.8 meV by photoluminescence measurement at 5K. The composition of the $In_{1-x}Ga_xAs$ was determined by the relative gas phase diffusion of TMIn and TMGa. Lattice mismatch and growth temperature were the most important variables that determine the electrical properties of $In_{1-x}Ga_xAs$ epitaxial layers. At optimized growth condition, it was possible to obtain a high quality $In_{1-x}Ga_xAs$ epilayers with a electron concentration as low as $8{\times}10^{14}/cm^3$ and an electron mobility as high as 11,000$\textrm{cm}^2$/Vsec at room temperature.

  • PDF

A Study on the Device Characteristics of NMOSFETs Having Elevated Source/drain Made by Selective Epitaxial Growth(SEG) of Silicon (실리콘 선택적 결정 성장 공정을 이용한 Elevated Source/drain물 갖는 NMOSFETs 소자의 특성 연구)

  • Kim, Yeong-Sin;Lee, Gi-Am;Park, Jeong-Ho
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.51 no.3
    • /
    • pp.134-140
    • /
    • 2002
  • Deep submicron NMOSFETs with elevated source/drain can be fabricated using self-aligned selective epitaxial growth(SEG) of silicon for enhanced device characteristics with shallow junction compared to conventional MOSFETs. Shallow junctions, especially with the heartily-doped S/D residing in the elevated layer, give hotter immunity to Yt roll off, drain-induced-barrier-lowering (DIBL), subthreshold swing (SS), punch-through, and hot carrier effects. In this paper, the characteristics of both deep submicron elevated source/drain NMOSFETs and conventional NMOSFETs were investigated by using TSUPREM-4 and MEDICI simulators, and then the results were compared. It was observed from the simulation results that deep submicron elevated S/D NMOSFETs having shallower junction depth resulted in reduced short channel effects, such as DIBL, SS, and hot carrier effects than conventional NMOSFETs. The saturation current, Idsat, of the elevated S/D NMOSFETs was higher than conventional NMOSFETs with identical device dimensions due to smaller sheet resistance in source/drain regions. However, the gate-to-drain capacitance increased in the elevated S/D MOSFETs compared with the conventional NMOSFETs because of increasing overlap area. Therefore, it is concluded that elevated S/D MOSFETs may result in better device characteristics including current drivability than conventional NMOSFETs, but there exists trade-off between device characteristics and fate-to-drain capacitance.

Low-Temperature Si and SiGe Epitaxial Growth by Ultrahigh Vacuum Electron Cyclotron Resonance Chemical Vapor Deposition (UHV-ECRCVD)

  • Hwang, Ki-Hyun;Joo, Sung-Jae;Park, Jin-Won;Euijoon Yoon;Hwang, Seok-Hee;Whang, Ki-Woong;Park, Young-June
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1996.06a
    • /
    • pp.422-448
    • /
    • 1996
  • Low-temperature epitaxial growth of Si and SiGe layers of Si is one of the important processes for the fabrication of the high-speed Si-based heterostructure devices such as heterojunction bipolar transistors. Low-temperature growth ensures the abrupt compositional and doping concentration profiles for future novel devices. Especially in SiGe epitaxy, low-temperature growth is a prerequisite for two-dimensional growth mode for the growth of thin, uniform layers. UHV-ECRCVD is a new growth technique for Si and SiGe epilayers and it is possible to grow epilayers at even lower temperatures than conventional CVD's. SiH and GeH and dopant gases are dissociated by an ECR plasma in an ultrahigh vacuum growth chamber. In situ hydrogen plasma cleaning of the Si native oxide before the epitaxial growth is successfully developed in UHV-ECRCVD. Structural quality of the epilayers are examined by reflection high energy electron diffraction, transmission electron microscopy, Nomarski microscope and atomic force microscope. Device-quality Si and SiGe epilayers are successfully grown at temperatures lower than 600℃ after proper optimization of process parameters such as temperature, total pressure, partial pressures of input gases, plasma power, and substrate dc bias. Dopant incorporation and activation for B in Si and SiGe are studied by secondary ion mass spectrometry and spreading resistance profilometry. Silicon p-n homojunction diodes are fabricated from in situ doped Si layers. I-V characteristics of the diodes shows that the ideality factor is 1.2, implying that the low-temperature silicon epilayers grown by UHV-ECRCVD is truly of device-quality.

  • PDF

Chemisorption of CO on ultrathin epitaxial Ni films n Cu(001) surface

  • E.K. Hwang;J.J. Oh;Lee, J.S.;Kim, S.K.;Kim, J.S.;Kim, J.S.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.182-182
    • /
    • 1999
  • The chemisorption effect of CO on the Ni/Cu(001) surface was investigated using LEED(Low Energy Electron Diffraction) and EELS(Electron Energy Loss Spectrscopy0 under the UHV conditions. after mounting the Cu(001) single crystal in the UHV chamber (base pressure 1$\times$10-10Torr), a clean surface was obtained after a few cycles of repeated Ar+ ion sputtering and annealing at about 40$0^{\circ}C$. The epitaxial thin Ni films were formed on the Cu(001) by evaporation from 99.999% Ni block. The pseudomorphic growth and the orderness of the thin Ni films were monitored by c(2$^{\circ}C$2) LEED pattern. CO adlayers on Ni epitaxial thin films were prepared by dosing pure CO has through a leak valve. After CO adsorpton at room temperature, two pairs of peaks were observed by EELS, whose relative intensities are changed as the film thickness is varied and time is elapsed. These two pair of peaks are likely related to different bonding sites (-top and bridge sites) of C-Ni as well as C-O vibration. Experimental results and qualitative interpretation of the spectra wille be discussed. The possibility of using EELS in combination with probe species (CO) to investigate the nature of thin film growth is mentioned. We will report the experimental result of O2 dosage on Ni film and interaction of CO and O2.

  • PDF