• Title/Summary/Keyword: Epistemological resources

Search Result 10, Processing Time 0.024 seconds

Exploring Scientific Argumentation Practice from Unproductive to Productive: Focus on Epistemological Resources and Contexts (비생산적 논변에서 생산적 논변으로의 실행 변화 탐색 -인식론적 자원과 맥락을 중심으로-)

  • Lee, Jeonghwa;Kim, Heui-Baik
    • Journal of The Korean Association For Science Education
    • /
    • v.41 no.3
    • /
    • pp.193-202
    • /
    • 2021
  • This study aims to identify what kind of epistemological resources were activated in unproductive and productive practice by students participating in scientific argumentation, and to explore which contexts result in changes in argumentative practice. We collected transcriptions of participants' argumentative lessons and interview, participants' work sheets, and researchers' field notes. The analysis revealed that the focus group activated different kinds of epistemological resources depending on their practice; propagated, belief, and accumulation in unproductive practice and constructed, understanding, accumulation, formation and rebuttal in productive practice. We found two contextual cues that led to these changes; unfamiliar form of argumentative task was provided and emotional, epistemic, and conceptual support of the epistemic authority. This work can be provided as additional case studies to analyze changes in practice according to learner context-dependent epistemology, and we expect to contribute to discussions of productive epistemology and stabilization for students' authentic science engagement.

A Theoretical Review and Trial Application of the 'Resources-Based View' (RBV) as an Alternative Cognitive Theory (대안적 인지 이론으로서 '자원 기반 관점'에 대한 이론적 고찰과 시험 적용)

  • Oh, Phil Seok
    • Journal of The Korean Association For Science Education
    • /
    • v.35 no.6
    • /
    • pp.971-984
    • /
    • 2015
  • The purpose of this study is twofold: to theoretically review the 'resources-based view' (RBV) developed by D. Hammer and his colleagues as an alternative cognitive theory and to illustrate the usefulness of the theory by applying it to interpret a science learning activity in which undergraduate students worked together to construct a model of the seasons. The theoretical review was based on the exploration of relevant literature and dealt mainly with three types of resources: conceptual, epistemological, and practical resources. The trial application revealed that scientific models have been developed through the combination of different pieces of conceptual resources activated from participants, rather than emerging as unitary wholes. However, all the activated resources were not included into a model, and some of the conceptual resources acted as constraints to constructing a scientific model. The implications included that science educators should be attentive and responsive to students' resources and help them use the resources productively to learn science.

Exploring the Teachers' Responsive Teaching Practice and Epistemological Framing in Whole Class Discussion After Small Group Argumentation Activity (소집단 논변 활동 후 전체 논의에서 이루어진 교사의 반응적 교수 실행과 인식론적 프레이밍 탐색)

  • Ha, Heesoo;Lee, Youngmi;Kim, Heui-Baik
    • Journal of The Korean Association For Science Education
    • /
    • v.38 no.1
    • /
    • pp.11-26
    • /
    • 2018
  • The purpose of this study is to investigate teachers' responsive practices in whole class discussion after small group argumentation and the underlying epistemological framing. Three teachers and 84 students participated in this study by engaging in argumentation activities about the sensory system. We recorded both their discussions in the classes and our interviews with the teachers, which were transcribed for analysis. The results of the analysis showed that the teachers' responsive practices and the epistemological framing were categorized into four types. By framing the discussion as 'reaching the correct answer through discussion,' the teacher focused on whether students' ideas corresponded to scientific concepts and transferred scientific ideas to the students. By framing the discussion as 'eliciting appropriate conceptual resources and developing them into a scientific idea through critical evaluation,' the teacher engaged in the students' discussion as another participant, and considered the small groups' arguments as resources that could develop into scientific concepts. By framing the discussion as 'sharing small groups' arguments,' the teacher responded by asking for clarification of each group's argument, considering it as a valid argument in its own way. By framing the discussion as 'reaching a consented argument through critical evaluation,' the teacher negotiated students' critical evaluation and revision of the arguments. We explored the implications and limitations of each type of responsive practice and considered that the results of this study will contribute to developing teachers' responsive teaching strategies in argumentation activities.

Design and Pilot Application of an Experiment Focusing on the Nature of Scientific Inquiry: Focus on the Epistemological Issues in the Process of Dry Ice Sublimation Experiment (과학 탐구의 본성에 초점을 둔 실험의 설계와 시범 적용 -드라이아이스 승화 실험에서 드러나는 인식론적 논제를 중심으로-)

  • Park, Jeongwoo;Lee, Sun-Kyung;Lee, Gyeong-Geon;Shim, Han Su;Shin, Myeong-Kyeong
    • Journal of The Korean Association For Science Education
    • /
    • v.39 no.2
    • /
    • pp.173-186
    • /
    • 2019
  • The purpose of this study is to design and apply a pilot inquiry experiment focusing on the epistemological issues of scientific activities, and derive educational implications by analyzing experimental activities and reflective discussions. Three graduate students who major in science education participated in the study voluntarily. Participants showed the characteristics of stable enquiry in Experiment 1. However, the small but continuous changes in Experiment 2 led the experiment to a phase of fluid enquiry seeking new theories. Participants mobilized various resources, proposed new hypotheses, and models and requested additional experiments to verify them. In the process of reflective discussions, the participants led to the following three epistemological issues. First, at the beginning of the experiment, their observations were theoretically dependent. Second, when the observations were no longer coherent with theory, they face a crisis, and the adjustment of observation and theory proceeds. Third, stable enquiry and fluid enquiry are performed according to the relationship between observation and theory. The educational implications of school science inquiry based on the above process and results are as follows: First, this study shows that fluid enquiry can follow stable enquiry naturally, and examples of the activities are presented together. Second, in this study, it was confirmed that participants could draw up epistemological issues based on their experiences through reflective discussions following inquiry.

Understanding the Role of Wonderment Questions Related to Activation of Conceptual Resources in Scientific Model Construction: Focusing on Students' Epistemological Framing and Positional Framing (과학적 모형 구성 과정에서 나타난 사고 질문의 개념적 자원 활성화의 이해 -인식론적 프레이밍과 위치 짓기 프레이밍을 중심으로-)

  • Lee, Cha-Eun;Kim, Heui-Baik
    • Journal of The Korean Association For Science Education
    • /
    • v.36 no.3
    • /
    • pp.471-483
    • /
    • 2016
  • The purpose of this study is to explore how students' epistemological framing and positional framing affect the role of wonderment questions related to the activation of conceptual resources and to investigate what contexts affect students' framings during scientific model construction. Four students were selected as focus group and they participated in collaborative scientific model construction of mechanisms relating to urination. According to the results, one student whose framings were "understanding phenomena" and "facilitator" asked wonderment questions, but the others whose framings were "classroom game" and "non-respondent" were not able to activate their conceptual resources. However, they were able to activate their conceptual resources when they shared the epistemological framing of "understanding phenomena" and shifted between the positional framings of "facilitator" and "respondent." Although they were able to activate their conceptual resources, these activated resources were not able to contribute to their model when they shifted to the framings of "classroom game" and "receiver." In contrast, when students constantly shared an "understanding phenomena" framing and dynamically shifted between the framings of "facilitator" and "respondent," they were able to activate various conceptual resources and develop their group model. The students' framings were affected by the contexts. These included: when students were confronted with cognitive difficulties and were not provided proper scaffolding; when the teacher played the role of answer provider and guided the activity with correctness; when there were several possible explanatory models that students could choose from; and when the teacher played the role of thought facilitator. This study contributes to supporting teaching and learning environments for productive scientific model construction.

Exploring Epistemological Features Presented in Texts of Exhibit Panels in the Science Museum (과학관의 전시 패널 글에 반영된 과학의 인식론적 측면 탐색)

  • Lee, Sun-Kyung;Shin, Myeong-Kyeong;Lee, Gyu-Ho;Choi, Chui-Im;Baek, Doo-Sung;Chung, Kwang-Hoon;Yu, Man-Sun;Kim, Sun-Ja;Son, Sung-Keun;Choi, Hyun-Sook;Lee, Kang-Hwan;Lee, Jeong-Gu
    • Journal of the Korean earth science society
    • /
    • v.32 no.1
    • /
    • pp.124-139
    • /
    • 2011
  • This study was to explore epistemological features presented in texts of exhibit panels in the science museum located in Gyeonggi Province. Out-of-school or daily experiences allow more properly and potentially students to form informative science image, because the understandings of scientific epistemology were constructed tacitly through various experiences over a long period of time. The target for this study was panel texts of exhibits in a science museum as an of out-of-school context. The analytical framework was adopted from epistemological frameworks by Ryder et al. (1999). The research results were explored in the categories of relationship between scientific knowledge claims and the data, the nature of lines of scientific enquiry, and social dimension of science. It revealed that one exhibit might reflect the characteristics of one epistemological position: relating one data to one knowledge claim; generating knowledge claim from scientists' individual interests or from discipline's internal epistemology; scientists working as a community or an institution. Findings suggested that the exhibits of a science museum including panel texts and medium need to reflect the wide ranges of scientific epistemology.

An Analysis of Relationships between Epistemological Beliefs about Science and Learner's Characteristics of Elementary School Students (초등학생의 과학에 대한 인식론적 신념과 학습자 특성과의 관련성 분석)

  • Lee Ju-Yeun;Paik Seoung-Hey
    • Journal of Korean Elementary Science Education
    • /
    • v.25 no.2
    • /
    • pp.167-178
    • /
    • 2006
  • The purpose of this study was to explore characteristics of sixth grade students' opistemological beliefs in science and the relationship to learner's characteristics: learning motivation, learning strategies, and logical thinking. The subjects were 265 sixth graders and data was collected through two types of questionnaires, translated and modified by researchers: opistemological beliefs regarding science, learning motivation & strategies. The results of this study were as follows. The students believed that the goals of science were related to activations such as 'Science is experiment', or 'Science is invention: These beliefs were connected with the emphasis of science classes or the focus of the science curriculum. However, the students' beliefs related to the changeability of science knowledge, the source of science knowledge, and the role of experiments in developing knowledge were oriented to modern opistemological views. Moreover, the beliefs were meaningfully related to students' characteristics: learning motivation, learning strategies, and logical thinking. Among the students' characteristics, logical thinking was especially related to all of the factors of students' beliefs: the changeability of science knowledge, the source of science knowledge, and the role of experiments in developing knowledge. However, the students who believed that scientific knowledge came from scientists, science teachers, or science textbooks had high levels of self-efficacy. Therefore, the belief that scientific knowledge is formed by self-discovery, in order to generate high self-efficacy, needs to be encouraged. From the results, it is possible to check the orientation of current science education based on the students' opistemological beliefs. In addition, the resources can be accumulated for persevering in our efforts to achieve a positive orientation for science education.

  • PDF

Analysis of Epistemic Considerations and Scientific Argumentation Level in Argumentation to Conceptualize the Concept of Natural Selection of Science-Gifted Elementary Students (초등 과학 영재 학생들의 자연선택 개념 이해를 위한 논변 활동에서 나타난 인식적 이해와 논변활동 수준 분석)

  • Park, Chuljin;Cha, Heeyoung
    • Journal of The Korean Association For Science Education
    • /
    • v.37 no.4
    • /
    • pp.565-575
    • /
    • 2017
  • This study analyzes the epistemic considerations and the argumentation level revealed in the discourse of the key concept of natural selection for science-gifted elementary students. The paper analyzes and discusses the results of a three-student focus group, drawn from a cohort of twenty gifted sixth-grade elementary students. Nature, generality, justification, and audience were used to analyze epistemic consideration. Learning progression in scientific argumentation including argument construction and critique was used to analyze students' scientific argumentation level. The findings are as follows: First, Epistemic considerations in discourse varied between key concepts of natural selection discussed. The nature aspect of epistemic considerations is highly expressed in the discourse for all natural selection key concepts. But the level of generality, justification and audience was high or low, and the level was not revealed in the discourse. In the heredity of variation, which is highly expressed in terms of generality of knowledge, the linkage with various phenomena against the acquired character generated a variety of ideas. These ideas were used to facilitate engagement in argumentation, so that all three students showed the level of argumentation of suggestions of counter-critique. Second, students tried to explain the process of speciation by using concepts that were high in practical epistemic considerations level when explaining the concept of speciation, which is the final natural selection key concept. Conversely, the concept of low level of epistemic considerations was not included as an explanation factor. The results of this study suggest that students need to analyze specific factors to understand why epistemological decisions are made by students and how epistemological resources are used according to context through various epistemological resources. Analysis of various factors influencing epistemological decisions can be a mediator of the instructor who can improve the quality and level of the argumentation.

Interaction Between Students and Generative Artificial Intelligence in Critical Mineral Inquiry Using Chatbots (챗봇 활용 핵심광물 탐구에서 나타난 학생과 생성형 인공지능의 상호작용)

  • Sueim Chung;Jeongchan Kim;Donghee Shin
    • Journal of the Korean earth science society
    • /
    • v.44 no.6
    • /
    • pp.675-692
    • /
    • 2023
  • This study used a Chatbot, a generative artificial intelligence (AI), to analyze the interaction between the Chatbot and students when exploring critical minerals from an epistemological aspect. The results, issues to be kept in mind in the teaching and learning process using AI were discussed in terms of the role of the teacher, the goals of education, and the characteristics of knowledge. For this study, we conducted a three-session science education program using a Chatbot for 19 high school students and analyzed the reports written by the students. As a result, in terms of form, the students' questions included search-type questions and non-search-type questions, and in terms of content, in addition to various questions asking about the characteristics of the target, there were also questions requiring a judgment by combining various data. In general, students had a questioning strategy that distinguished what they should aim for and what they should avoid. The Chatbot's answer had a certain form and consisted of three parts: an introduction, a body, and a conclusion. In particular, the conclusion included commentary or opinions with opinions on the content, and in this, value judgments and the nature of science were revealed. The interaction between the Chatbot and the student was clearly evident in the process in which the student organized questions in response to the Chatbot's answers. Depending on whether they were based on the answer, independent or derived questions appeared, and depending on the direction of comprehensiveness and specificity, superordinate, subordinate, or parallel questions appeared. Students also responded to the chatbot's answers with questions that included critical thinking skills. Based on these results, we discovered that there are inherent limitations between Chatbots and students, unlike general classes where teachers and students interact. In other words, there is 'limited interaction' and the teacher's role to complement this was discussed, and the goals of learning using AI and the characteristics of the knowledge they provide were also discussed.

An Epistemological Inquiry on the Development of Statistical Concepts (통계적 개념 발달에 관한 인식론적 고찰)

  • Lee, Young-Ha;Nam, Joo-Hyun
    • The Mathematical Education
    • /
    • v.44 no.3 s.110
    • /
    • pp.457-475
    • /
    • 2005
  • We have inquired on what the statistical classes of the secondary schools had been aiming to, say the epistermlogical objects. And we now appreciate that the main obstacle to the systematic articulation is the lack of anticipation on what the statistical concepts are. This study focuses on the ingredients of the statistical concepts. Those are to be the ground of the systematic articulation of statistic courses, especially of the one for the school kids. Thus we required that those ingredients must satisfy the followings. i) directly related to the contents of statistics ii) psychologically developing iii) mutually exclusive each other as much as possible iv) exhaustive enough to cover all statistical concepts We examined what and how statisticians had been doing and the various previous views on these. After all we suggest the following three concepts are the core of conceptual developments of statistic, say the concept of distributions, the summarizing ability and the concept of samples. By the concepts of distributions we mean the frequency views on each random categories and that is developing from the count through the probability along ages. Summarizing ability is another important resources to embed his probe with the data set. It is not only viewed as a number but also to be anticipated as one reflecting a random phenomena. Inductive generalization is one of the most hazardous thing. Statistical induction is a scientific way of challenging this and this starts from distinguishing the chance with the inevitable consequences. One's inductive logic grows up along with one's deductive arguments, nevertheless they are different. The concept of samples reflects' one's view on the sample data and the way of compounding one's logic with the data within one's hypothesis. With these three in mind we observed Korean Statistic Curriculum from K to 12. Distributional concepts are dealt with throughout but not sequenced well. The way of summarization has been introduced in the 1 st, 5th, 7th and the 10th grade as a numerical value only. One activity on the concept of sample is given at the 6th grade. And it jumps into the statistical reasoning at the selective courses of ' Mathematics I ' or of ' Probability and Statistics ' in the grades of 11-12. We want to suggest further studies on the developing stages of these three conceptual features so as to obtain a firm basis of successive statistical articulation.

  • PDF