• Title/Summary/Keyword: Epipole

Search Result 7, Processing Time 0.027 seconds

In-Car Video Stabilization using Focus of Expansion

  • Kim, Jin-Hyun;Baek, Yeul-Min;Yun, Jea-Ho;Kim, Whoi-Yul
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.12
    • /
    • pp.1536-1543
    • /
    • 2011
  • Video stabilization is a very important step for vision based applications in the vehicular technology because the accuracy of these applications such as obstacle distance estimation, lane detection and tracking can be affected by bumpy roads and oscillation of vehicle. Conventional methods suffer from either the zooming effect which caused by a camera movement or some motion of surrounding vehicles. In order to overcome this problem, we propose a novel video stabilization method using FOE(Focus of Expansion). When a vehicle moves, optical flow diffuses from the FOE and the FOE is equal to an epipole. If a vehicle moves with vibration, the position of the epipole in the two consecutive frames is changed by oscillation of the vehicle. Therefore, we carry out video stabilization using motion vector estimated from the amount of change of the epipoles. Experiment results show that the proposed method is more efficient than conventional methods.

On Design of Visual Servoing using an Uncalibrated Camera in 3D Space

  • Morita, Masahiko;Kenji, Kohiyama;Shigeru, Uchikado;Lili, Sun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1121-1125
    • /
    • 2003
  • In this paper we deal with visual servoing that can control a robot arm with a camera using information of images only, without estimating 3D position and rotation of the robot arm. Here it is assumed that the robot arm is calibrated and the camera is uncalibrated. We use a pinhole camera model as the camera one. The essential notion can be show, that is, epipolar geometry, epipole, epipolar equation, and epipolar constrain. These play an important role in designing visual servoing. For easy understanding of the proposed method we first show a design in case of the calibrated camera. The design is constructed by 4 steps and the directional motion of the robot arm is fixed only to a constant direction. This means that an estimated epipole denotes the direction, to which the robot arm translates in 3D space, on the image plane.

  • PDF

On Design of Visual Servoing using an Uncalibrated Camera and a Calibrated Robot

  • Uchikado, Shigeru;Morita, Masahiko;Osa, Yasuhiro;Mabuchi, Tesuo;Tanya, Kanya
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.23.2-23
    • /
    • 2001
  • In this paper we deal with visual servoing that can control a robot arm with a camera using information of images only, without estimating 3D position and rotation of the robot arm. Here it is assumed that the robot arm is calibrated and the camera is uncalibrated. We use a pinhole camera model as the camera one. The essential notion can be show, that is, epipolar geometry, epipole, epipolar equation, and epipolar constrain. These play an important role in designing visual servoing. For easy understanding of the proposed method we first show a design in case of the calibrated camera. The design is constructed by 4 steps and the directional motion of the robot arm is fixed only to a constant direction. This means that an estimated epipole denotes the direction, to which the robot arm translates in 3D space, on the image plane.

  • PDF

New Method of Visual Servoing using an Uncalibrated Camera and a Calibrated Robot

  • Morita, Masahiko;Shigeru, Uchikado;Yasuhiro, Osa
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.41.4-41
    • /
    • 2002
  • In this paper we deal with visual servoing that can control a robot arm with a camera using information of images only, without estimating 3D position and rotation of the robot arm. Here it is assumed that the robot arm is calibrated and the camera is uncalibrated. Here we consider two coordinate systems, the world coordinate system and the camera coordinate one and we use a pinhole camera model as the camera one. First of all, the essential notion can be show, that is, epipolar geometry, epipole, epipolar equation, and epipolar constrain. And these plays an important role in designing visual servoing in the later chapters. Statement of the problem is giver. Provided two a priori...

  • PDF

3D measuring system by using the stereo vision (스테레오비젼을 이용한 3차원 물체 측정 시스템)

  • 조진연;김기범
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.224-228
    • /
    • 1997
  • Computer vision system become more important as the researches on inspection systems, intelligent robots , diagnostic medical systems is performed actively. In this paper, 3D measuring system is developed by using stereo vision. The relation between left image and right image is obtained by using 8 point algorithm, and fundamental matrix, epipole and 3D reconstruction algorithm are used to measure 3D dimensions. 3D measuring system was developed by Visual Basic, in which 3D coordinates would be obtained by simple mouse clicks. This software would be applied to construction area, home interior system, rapid measuring system.

  • PDF

View synthesis in uncalibrated images (임의 카메라 구조에서의 영상 합성)

  • Kang, Ji-Hyun;Kim, Dong-Hyun;Sohn, Kwang-Hoon
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.437-438
    • /
    • 2006
  • Virtual view synthesis is essential for 3DTV systems, which utilizes the motion parallax cue. In this paper, we propose a multi-step view synthesis algorithm to efficiently reconstruct an arbitrary view from limited number of known views of a 3D scene. We describe an efficient image rectification procedure which guarantees that an interpolation process produce valid views. This rectification method can deal with all possible camera motions. The idea consists of using a polar parameterization of the image around the epipole. Then, to generate intermediate views, we use an efficient dense disparity estimation algorithm considering features of stereo image pairs. Main concepts of the algorithm are based on the region dividing bidirectional pixel matching. The estimated disparities are used to synthesize intermediate view of stereo images. We use computer simulation to show the result of the proposed algorithm.

  • PDF

An Epipolar Rectification for Object Segmentation (객체분할을 위한 에피폴라 Rectification)

  • Jeong, Seung-Do;Kang, Sung-Suk;CHo, Jung-Won;Choi, Byung-Uk
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.1C
    • /
    • pp.83-91
    • /
    • 2004
  • An epipolar rectification is the process of transforming the epipolar geometry of a pair of images into a canonical form. This is accomplished by applying a homography to each image that maps the epipole to a predetermined point. In this process, rectified images transformed by homographies must be satisfied with the epipolar constraint. These homographies are not unique, however, we find out homographies that are suited to system's purpose by means of an additive constraint. Since the rectified image pair be a stereo image pair, we are able to find the disparity efficiently. Therefore, we are able to estimate the three-dimensional information of objects within an image and apply this information to object segmentation. This paper proposes a rectification method for object segmentation and applies the rectification result to the object segmentation. Using color and relative continuity of disparity for the object segmentation, the drawbacks of previous segmentation method, which are that the object is segmented to several region because of having different color information or another object is merged into one because of having similar color information, are complemented. Experimental result shows that the disparity of result image of proposed rectification method have continuity about unique object. Therefore we have confirmed that our rectification method is suitable to the object segmentation.